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Abstract
Although there has been significant interest in extending the AGM paradigm of belief change beyond finitary logics, the computational
aspects of AGM have remained almost untouched. We investigate the computability of AGM contraction on non-finitary logics, and
show an intriguing negative result: there are infinitely many uncomputable AGM contraction functions in such logics. Drastically, even
if we restrict the theories used to represent epistemic states, in all non-trivial cases, the uncomputability remains. On the positive side,
we use Büchi automata to construct computable AGM contraction functions on Linear Temporal Logic (LTL).

1. Introduction
The field of Belief Change [1, 2, 3] investigates how to keep a
corpus of beliefs consistent as it evolves. The field is mainly
founded on the AGM paradigm [1], named after its authors’
initials, which distinguishes, among others, two main kinds
of changes: belief revision, which consists in incorporating
an incoming piece of information with the proviso that the
updated corpus of beliefs is consistent; and belief contraction
whose purpose is to retract an obsolete piece of information.
In either case, the incurred changes should be minimized
so that most of the original beliefs are preserved. This is
known as principle of minimal change. Contraction is central
as it can be used to define other forms of belief change. For
example, belief revision can be defined in terms of contrac-
tion: first, remove information in conflict with the incoming
belief via contraction, only then incorporate the incoming
belief. When classical negation is at disposal, this recipe for
defining revision from contraction is formalised via the Levi
identity [4, 5].

The AGM paradigm prescribes rationality postulates that
capture the principle of minimal change, and constructive
functions that satisfy such postulates, called rational func-
tions, as for instance partial meet [1], (smooth) kernel con-
traction [6], epistemic entrenchment [2] and Grove’s system
of spheres [7]. Originally, the AGM paradigm was developed
assuming some conditions about the underlying logic [2, 8].
Although these conditions cover some classical logics such
as classical Propositional Logic and First Order Logic, they
restrict the reach of the AGM paradigm into more expres-
sive logics including several Descriptions Logics [9], Modal
Logics [10] and Temporal Logics such as LTL, CTL and CTL*
[11]. It turns out that the AGM paradigm is independent of
such conditions [8], although rational contraction functions
do not exist in every logic [8, 12]. Logics in which rational
contraction functions do exist are dubbed AGM compliant
[8]. As a result, several works have been dedicated to dis-
pense with the AGM assumptions in order to extend the
paradigm to more expressive logics: Horn logics [13, 14, 15],
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para-consistent logics [16], Description Logics [17, 12, 8],
and non-compact logics [18]. See [19] for a discussion of
several other works in this line.

Although much effort has been put into extending the
AGM paradigm to more expressive logics, few works have in-
vestigated the computational aspects of the AGM paradigm
such as [20, 21, 22]. All these works, however, focused on
investigating the complexity of decision problems for some
fixed belief change operators on classical propositional log-
ics and Horn. In light of the interest and effort of expanding
the AGM paradigm for more expressive non-classical logics,
it is paramount to comprehend the computational aspects of
belief change in such more expressive logics. In this context,
there is a central question that even precedes complexity:

Computability / Effectiveness: Given a belief change
operator ∘, does there exist a Turing Machine that
computes ∘, and stops on all inputs?

The answer to the question above depends on two main
elements: the underlying logic, and the chosen operator.
Clearly, it only makes sense to answer such questions for
logics that are AGM compliant. However, independently
of the operator, the question is trivial for finitary logics,
that is, logics whose language contains only finitely many
equivalence classes, as it is the case of classical propositional
logics. For non-finitary logics, by contrast, we show a dis-
ruptive result: AGM rational contraction functions suffer
from uncomputability.

This first result uses all the expressive power of the un-
derlying logic. To control computability, one could limit
the space of epistemic states to some specific set of theories
(logically closed set of sentences). However, we show that
no matter how much we constrain the space of epistemic
states, uncomputability still remains, as long as the restric-
tion is not so severe that the space collapses back to the
finitary case. Although this shows that uncomputability is
unavoidable in all such expressive spaces, it is of extreme
importance to identify how, and under which conditions,
one can construct specific (families of) contraction func-
tions that are computable. We investigate this question for
Linear Temporal Logic (LTL), and we show that when rep-
resenting epistemic states via Büchi automata [23], we can
construct families of contraction functions that are com-
putable within such a space. LTL is a very expressive logic
used in a plethora of applications in Computer Science and
AI. For example, LTL has been used for specification and
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verification of software and hardware systems [11], in busi-
ness process models such as DECLARE [24], in planning and
reasoning about actions [25, 26], and extending Description
Logics with temporal knowledge [27, 28]. Büchi automata
are endued with closure properties which allow for both
effective reasoning and computable contraction functions.

Roadmap: In Section 2, we review basic concepts regard-
ing logics, including LTL and Büchi automata. We briefly
review AGM contraction in Section 3. Section 4 discusses
the question of finite representation for epistemic states,
and presents our first contribution, namely, we introduce a
general notion to capture all forms of finite representations,
and show a negative result: for a wide class of so-called com-
pendious logics, not all epistemic states can be represented
finitely. In Section 5, we present an expressive method of
finite representation for LTL which is based on Büchi au-
tomata, and discuss how it supports reasoning. Section 6
introduces the notion of AGM closedness, i.e., every rational
contraction outcome on a finitely representable belief state
should again be finitely representable. We show that, under
certain weak conditions, closedness cannot be satisfied for
compendious logics. In Section 7, we establish our third
negative result for compendious logics: even if we restrict
ourselves to contraction functions whose output can be rep-
resented, uncomputability of contraction is inevitable in the
non-finitary case, i.e., there always exist uncountably many
uncomputable contraction functions. On the positive side,
in Section 8, we show that computable contractions do exist
for LTL theories represented via Büchi automata, and we
identify the conditions needed for computability. Section 9
discusses the impact of our results and provides an outlook
on future work.

2. Logics and Automata
We review a general notion of logics that will be used
throughout the paper. We use 𝒫(𝑋) to denote the power
set of a set𝑋 . A logic is a pair L = (Fm,Cn) comprising a
countable1 set of formulae Fm , and a consequence operator
Cn : 𝒫(Fm) → 𝒫(Fm) that maps each set of formulae to
the conclusions entailed from it. We sometimes write FmL
and CnL for brevity.

We consider logics that are Tarskian, that is, logics whose
consequence operator Cn is monotone (if 𝑋1 ⊆ 𝑋2 then
Cn(𝑋1) ⊆ Cn(𝑋2)), extensive (𝑋 ⊆ Cn(𝑋)) and idempo-
tent (Cn(Cn(𝑋)) = Cn(𝑋)). We say that two formulae
𝜙,𝜓 ∈ Fm are logically equivalent, denoted 𝜙 ≡ 𝜓, if
Cn(𝜙) = Cn(𝜓). Cn(∅) is the set of all tautologies. A
theory of L is a set of formulae 𝒦 such that Cn(𝒦) = 𝒦.
The expansion of a theory 𝒦 by a formula 𝜙 is the theory
𝒦+𝜙 := Cn(𝒦∪{𝜙}). Let ThL denote the set of all theo-
ries of L. If ThL is finite, we say that L is finitary; otherwise,
L is non-finitary. Equivalently, L is finitary if L has only
finitely many formulae up to logical equivalence.

A theory 𝒦 is consistent if 𝒦 ̸= Fm , and it is complete if
for all formulae 𝜙 /∈ 𝒦, we have 𝒦+ 𝜙 = Fm . The set of
all complete consistent theories of L is denoted as CCTL.
The set of all CCTs that do not contain 𝜙 is given by 𝜔(𝜙).

A logic L is Boolean, if FmL is closed under the classical
boolean operators and they are interpreted as usual. In
particular, for a logic to be Boolean, we require every theory

1A set 𝑋 is countable if there is an injection from 𝑋 to the natural
numbers.
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Figure 1: A Kripke structure on AP = {𝑝}, with an initial
state ℓ0. The labels 𝜆(ℓ𝑖) are shown below each state ℓ𝑖.

𝒦 ∈ ThL to coincide with the intersection of all the CCTs
containing 𝒦, that is, 𝒦 =

⋂︀
{𝒦′ ∈ CCTL | 𝒦 ⊆ 𝒦′ }.

We omit subscripts whenever the meaning is clear.

2.1. Linear Temporal Logic
We recall the definition of linear temporal logic [11], LTL for
short. For the remainder of the paper, we fix an arbitrary
finite, nonempty set AP of atomic propositions.

Definition 1 (LTL Formulae). Let 𝑝 range over AP . The
formulae of LTL are generated by the following grammar:

𝜙 ::= ⊥ | 𝑝 | ¬𝜙 | 𝜙 ∨ 𝜙 | X 𝜙 | 𝜙U 𝜙

FmLTL denotes the set of all LTL formulae.

In LTL, time is interpreted as a linear timeline that unfolds
infinitely into the future. The operator X states that a
formula holds in the next time step, while 𝜙 U 𝜓 means
that 𝜙 holds until 𝜓 holds (and 𝜓 does eventually hold). We
define the usual abbreviations for boolean operations (⊤, ∧,
→) as well as the temporal operators F𝜙 := ⊤U𝜙 (finally,
at some point in the future), G𝜙 := ¬F¬𝜙 (globally, at all
points in the future), and X𝑘 𝜙 for repeated application of
X , where 𝑘 ∈ N.

Formally, timelines are modelled as traces. A trace is an
infinite sequence 𝜋 = 𝑎0𝑎1 . . ., where each 𝑎𝑖 ∈ 𝒫(AP)
is a set of atomic propositions that hold at time step 𝑖. The
infinite suffix of 𝜋 starting at time step 𝑖 is denoted by 𝜋𝑖 =
𝑎𝑖𝑎𝑖+𝑖 · · · . The set of all traces is denoted by 𝒫(AP)𝜔 .

The semantics of LTL is defined in terms of Kripke struc-
tures [11], which describe possible traces.

Definition 2 (Kripke Structure). A Kripke structure is a
tuple 𝑀 = (𝑆, 𝐼, 𝑇, 𝜆) such that 𝑆 is a finite set of states;
𝐼 ⊆ 𝑆 is a non-empty set of initial states; 𝑇 ⊆ 𝑆 × 𝑆 is
a left-total transition relation, i.e., for all 𝑠 ∈ 𝑆 there exists
𝑠′ ∈ 𝑆 such that (𝑠, 𝑠′) ∈ 𝑇 ; and 𝜆 : 𝑆 → 𝒫(AP) labels
states with sets of atomic propositions.

A trace of a Kripke structure 𝑀 is a sequence
𝜋 = 𝜆(𝑠0)𝜆(𝑠1)𝜆(𝑠2) . . . with 𝑠0 ∈ 𝐼 , and for all 𝑖 ≥ 0,
𝑠𝑖 ∈ 𝑆 and (𝑠𝑖, 𝑠𝑖+1) ∈ 𝑇 . The set of all traces from a
Kripke structure𝑀 is given by Traces(𝑀). Figure 1 shows
an example of a Kripke structure, in graphical notation.

The satisfaction relation between Kripke structure and
LTL formulae is defined in terms of the satisfaction between
the Kripke structure’s traces and LTL formulae.

Definition 3 (Satisfaction). The satisfaction relation be-
tween traces and LTL formulae is the least relation |= ⊆
𝒫(AP)𝜔 × FmLTL such that, for all traces 𝜋 = 𝑎0𝑎1 . . . ∈
𝒫(AP)𝜔 :

𝜋 ̸|= ⊥
𝜋 |= 𝑝 iff 𝑝 ∈ 𝑎0
𝜋 |= ¬𝜙 iff 𝜋 ̸|= 𝜙
𝜋 |= 𝜙1 ∨ 𝜙2 iff 𝜋 |= 𝜙1 or 𝜋 |= 𝜙2

𝜋 |= X 𝜙 iff 𝜋1 |= 𝜙
𝜋 |= 𝜙1 U 𝜙2 iff there exists 𝑖 ≥ 0 s.t. 𝜋𝑖 |= 𝜙2

and for all 𝑗 < 𝑖, 𝜋𝑗 |= 𝜙1



Büchi automaton𝐴𝒦 :

𝑞0 𝑞1 𝑞2

∅,{𝑝}

∅,{𝑝}
{𝑝}

∅, {𝑝}

Some Infinite Words from ℒ(𝐴𝒦):

𝜋1 = ∅ ∅ ∅ {𝑝} (∅ {𝑝})𝜔

𝜋2 = {𝑝} {𝑝} ∅ (∅ {𝑝})𝜔

𝜋3 = {𝑝} {𝑝} ∅ {𝑝}𝜔

Figure 2: A Büchi automaton (on the right), and some infinite
words accepted by this automaton (on the left).

A Kripke structure 𝑀 satisfies a formula 𝜙, denoted
𝑀 |= 𝜙, iff all traces of 𝑀 satisfy 𝜙. 𝑀 satisfies a set 𝑋
of formulae, 𝑀 |= 𝑋 , iff 𝑀 |= 𝜙 for all 𝜙 ∈ 𝑋 . The con-
sequence operator CnLTL is defined from the satisfaction
relation.

Definition 4 (Consequence Operator). The consequence
operator CnLTL maps each set 𝑋 of LTL formulae to the set
of all formulae 𝜓, such that for all Kripke structures 𝑀 , if
𝑀 |= 𝑋 then also 𝑀 |= 𝜓.

Observation 5. LTL is Tarskian and Boolean.

2.2. Büchi Automata
Büchi automata are finite automata widely used in formal
specification and verification of systems, specially in LTL
model checking [11]. Büchi automata have also been used in
planning to synthesize plans when goals are in LTL [26, 30].

Definition 6 (Büchi Automata). A Büchi automaton is a
tuple𝐴 = (𝑄,Σ,∆, 𝑄0, 𝑅) consisting of a finite set of states
𝑄; a finite, nonempty alphabet Σ (whose elements are called
letters); a transition relation ∆ ⊆ 𝑄×Σ×𝑄; a set of initial
states 𝑄0 ⊆ 𝑄; and a set of recurrence states 𝑅 ⊆ 𝑄.

We show a concrete Büchi automaton in Example 7.
A Büchi automaton accepts an infinite word over a fi-

nite alphabet Σ, if the automaton visits a recurrence state
infinitely often while reading the word. Formally, an in-
finite word is a sequence 𝑎0𝑎1 . . . with 𝑎𝑖 ∈ Σ for all 𝑖.
For a finite word 𝜌 = 𝑎0 . . . 𝑎𝑛, with 𝑛 ≥ 0, let 𝜌𝜔 denote
the infinite word corresponding to the infinite repetition
of 𝜌. The set of all infinite words is denoted by Σ𝜔 . An
infinite word 𝑎0𝑎1𝑎2 . . . ∈ Σ𝜔 is accepted by a Büchi au-
tomaton 𝐴 = (𝑄,Σ,∆, 𝑄0, 𝑅) if there exists a sequence
𝑞0, 𝑞1, 𝑞2, . . . of states 𝑞𝑖 ∈ 𝑄 such that 𝑞0 ∈ 𝑄0 is an ini-
tial state, for all 𝑖 we have that (𝑞𝑖, 𝑎𝑖, 𝑞𝑖+1) ∈ ∆ and there
are infinitely many 𝑖 ∈ N with 𝑞𝑖 ∈ 𝑅. The set ℒ(𝐴) of all
accepted words is the language of 𝐴.

In this work, unless otherwise noted, we always consider
Büchi automata over the alphabet Σ = 𝒫(AP), where
letters are sets of atomic propositions and infinite words are
traces. The following example presents such an automaton.

Example 7. Figure 2 illustrates (on the left) a Büchi automa-
ton 𝐴𝒦 over the alphabet Σ = {∅, {𝑝}}. States are depicted
as circles and each transition (𝑞, 𝑎, 𝑞′) is depicted as an arrow
from 𝑞 to 𝑞′ labelled with 𝑎. The initial state is 𝑞0, and the
recurrence states are marked as double circles, i. e., 𝑞1 and 𝑞2.

The right-hand side of Figure 2 shows some of the infinite
words accepted by the Büchi automaton 𝐴𝒦. Consider, for
instance, the sequence

𝑞0
∅→ 𝑞0

∅→ 𝑞0
∅→ 𝑞1

{𝑝}→ 𝑞2
∅→ 𝑞1

{𝑝}→ 𝑞2 . . . ,

where each arrow 𝑞
𝑥→ 𝑞′ indicates the transition (𝑞, 𝑥, 𝑞′) in

the automaton. By concatenating the letters in this sequence,
we get the infinite word 𝜋1 defined in Figure 2. The acceptance
condition requires some recurrence states to appear infinitely
often. As for instance the recurrence state 𝑞1 appears infinitely
often, the acceptance condition holds and 𝜋1 is accepted. Anal-
ogously, the infinite words 𝜋2 and 𝜋3 are also accepted.

On the other hand, the infinite word 𝜋′ = ∅𝜔 is not ac-
cepted, as the only sequence of states that produces this word is
𝑞0

∅→ 𝑞0
∅→ 𝑞0 . . ., where 𝑞0

∅→ loops. The only state in this
sequence is 𝑞0 which is not a recurrence state and, therefore,
the acceptance condition is violated.

Emptiness of a Büchi automaton’s language is decidable.
Further, Büchi automata for the union, intersection and
complement of the languages of given Büchi automata can
be effectively constructed [23]. In the remainder of the
paper we specifically make use of the construction for union
and intersection, and denote them with the symbol ⊔ resp.
⊓. The automata-theoretic treatment for several crucial
reasoning problems in LTL, such as model-checking and
satisfiability, is based on the following result:

Proposition 8 ([11]). For every LTL formula 𝜙 and every
Kripke structure 𝑀 , there exist Büchi automata 𝐴𝜙 and 𝐴𝑀
that accept precisely the traces that satisfy 𝜙 resp. the traces
of 𝑀 , that is, ℒ(𝐴𝜙) = {𝜋 ∈ 𝒫(AP)𝜔 | 𝜋 |= 𝜙 }, and
ℒ(𝐴𝑀 ) = Traces(𝑀).

The proposition above states that every LTL formula 𝜙
can be expressed as a Büchi automaton𝐴𝜙, in the sense that
𝐴𝜙 accepts exactly all the traces satisfying 𝜙. This result
allows to decide if a formula 𝜙 is satisfiable, by deciding
emptiness of ℒ(𝐴𝜙). Analogously, a Büchi automaton 𝐴𝑀
can be used to capture precisely all the traces from a given
Kripke structure 𝑀 , as Proposition 8 states. These two
observations make it possible to decide LTL model-checking,
by deciding the inclusion ℒ(𝐴𝑀 ) ⊆ ℒ(𝐴𝜙). In Section 5,
we will exploit Proposition 8 to devise mechanisms that
support the computation of belief change operators in LTL.

3. AGM Contraction
In the AGM paradigm, the epistemic state of an agent is
represented as a theory. A contraction function for a theory
𝒦 is a function .− : Fm → 𝒫(Fm) that given an unwanted
piece of information 𝜙 outputs a subset of 𝒦 which does not
entail 𝜙. Contraction functions are subject to the following
rationality postulates [2]:

(K−
1 ) 𝒦 .− 𝜙 = Cn(𝒦 .− 𝜙) (closure)

(K−
2 ) 𝒦 .− 𝜙 ⊆ 𝒦 (inclusion)

(K−
3 ) If 𝜙 ̸∈ 𝒦, then 𝒦 .− 𝜙 = 𝒦 (vacuity)

(K−
4 ) If 𝜙 ̸∈ Cn(∅), then 𝜙 ̸∈ 𝒦 .− 𝜙 (success)

(K−
5 ) 𝒦 ⊆ (𝒦 .− 𝜙) + 𝜙 (recovery)

(K−
6 ) If 𝜙 ≡ 𝜓, then 𝒦 .− 𝜙 = 𝒦 .− 𝜓 (extensionality)

(K−
7 ) (𝒦 .− 𝜙) ∩ (𝒦 .− 𝜓) ⊆ 𝒦 .− (𝜙 ∧ 𝜓)

(K−
8 ) If 𝜙 ̸∈ 𝒦 .− (𝜙 ∧ 𝜓) then 𝒦 .− (𝜙 ∧ 𝜓) ⊆ 𝒦 .− 𝜙

For a detailed discussion on the rationale of these postu-
lates, see [1, 2, 3]. The postulates (K−

1 ) to (K−
6 ) are called

the basic rationality postulates, while (K−
7 ) and (K−

8 ) are
known as supplementary postulates. A contraction func-
tion that satisfies the basic rationality postulates is called
a rational contraction function. If a contraction function



satisfies all the eight rationality postulates, we say that it is
fully rational.

There are many different constructions for (fully) ratio-
nal AGM contraction such as Partial Meet [1], Epistemic
Entrenchment [2], and Kernel Contraction [6]. All these
functions are characterized by the AGM postulates of con-
traction. For an overview, see [31, 3]. These contraction
functions, however, are rational only in very specific logics,
precisely in the presence of the AGM assumptions [8] which
includes requiring the logic to be Boolean and compact. See
[8] for details about the AGM assumptions.

To embrace more expressive logics, Ribeiro et al. [18] have
proposed a new class of (fully) rational contraction functions
which only assume the underlying logic to be Tarskian and
Boolean: the Exhaustive Contraction Functions (for basic
rationality) and the Blade Contraction Functions (for full
rationality). We briefly review Exhaustive Contraction Func-
tions. We do not delve into the Blade Contraction Functions,
as our results for full rationality do not use such functions,
but rather use the supplementary postulates directly.

Definition 9 (Choice Functions). A choice function is a
function 𝛿 : Fm → 𝒫(CCT) maps each formula 𝜙 to a set
of complete consistent theories satisfying the following:

(CF1) 𝛿(𝜙) ̸= ∅;

(CF2) if 𝜙 ̸∈ Cn(∅), then 𝛿(𝜙) ⊆ 𝜔(𝜙); and

(CF3) for all 𝜙,𝜓 ∈ Fm , if 𝜙 ≡ 𝜓 then 𝛿(𝜙) = 𝛿(𝜓).

A choice function chooses at least one complete consis-
tent theory, for each formula 𝜙 to be contracted (CF1). As
long as 𝜙 is not a tautology, the CCTs chosen must not con-
tain the formula 𝜙 (CF2), since the goal is to relinquish 𝜙.
The last condition (CF3) imposes that a choice function is
syntax-insensitive.

Definition 10 (Exhaustive Contraction Functions). Let 𝛿
be a choice function. The Exhaustive Contraction Function
(ECF) on a theory 𝒦 induced by 𝛿 is the function .−𝛿 such
that 𝒦 .−𝛿 𝜙 = 𝒦 ∩

⋂︀
𝛿(𝜙), if 𝜙 /∈ Cn(∅) and 𝜙 ∈ 𝒦;

otherwise, 𝒦 .−𝛿 𝜙 = 𝒦.

Whenever the formula 𝜙 to be contracted is not a tautol-
ogy and is in the theory 𝒦, an ECF modifies the current the-
ory by selecting some CCTs and intersecting them with 𝒦.
On the other hand, if 𝜙 is either a tautology or is not in
the theory 𝒦, then all beliefs are preserved. The ECFs are
similar in spirit to the standard partial meet functions [1].
The main difference is that partial meet relies on the internal
structure of the current theory by selecting and intersect-
ing remainders (maximal non-entailing subsets), whilst ECF
chooses external structures (CCTs). In the latter, CCTs are
used, because, in the absence of compactness, remainders
do not exist in general [12, 18, 32].

Theorem 11. [18] A contraction function .− is rational iff
it is an ECF.

4. Limits of Finite Representation
In the AGM paradigm, the epistemic states of an agent are
represented as theories which are in general infinite. How-
ever, according to Hansson [33, 34], the epistemic states of
rational agents should have a finite representation. This is
motivated from the perspective that epistemic states should

resemble the cognitive states of human minds, and Hans-
son argues that as “finite beings”, humans cannot sustain
epistemic states that do not have a finite representation. Fur-
ther, finite representation is crucial from a computational
perspective, to represent epistemic states in a computer.

Different strategies of finite representation have been
used such as (i) finite bases [35, 36, 37], and (ii) finite sets of
models [38, 39]. In the former strategy, each finite set 𝑋 of
formulae, called a finite base, represents the theory Cn(𝑋).
In the latter strategy, models are used to represent an epis-
temic state. Precisely, each finite set𝑋 of models represents
the theory of all formulae satisfied by all models in 𝑋 , that
is, the theory {𝜙 ∈ FmL | 𝑀 |= 𝜙, for all 𝑀 ∈ 𝑋}.
The expressiveness of finite bases and finite sets of models
are, in general (depending on the logic), incomparable, that
is, some theories expressible in one method cannot be ex-
pressed in the other method and vice versa. For instance,
the information that “John swims every two days” cannot
be expressed via a finite base in LTL [40], although it can
be expressed via a single Kripke structure (shown in Fig. 1,
where 𝑝 stands for “John swims” ). On the other hand, “Anna
will swim eventually” is expressible as a single LTL formula
(F 𝑠, where 𝑠 stands for “Anna swims” ), but it cannot be
expressed via a finite set of models.

Given the incomparable expressiveness of these two well-
established strategies of finite representations, it is not clear
whether in general, and specifically in non-finitary logics,
there exists a method capable of finitely representing all
theories, therefore capturing the whole expressiveness of
the logic. Towards answering this question, we provide a
broad definition to conceptualise finite representation.

A finite representation for a theory can been seen as a
finite word, i.e., a code, from a fixed finite alphabet ΣC. For
example, the codes 𝑐1 := {a, b} and 𝑐2 := {a, a→b}
are finite words in the language of set theory, and both
represent the theory Cn({𝑎 ∧ 𝑏}). The set of all codes, i.e.,
of all finite words over ΣC, is denoted by Σ*

C. In this sense,
a method of finite representation is a mapping 𝑓 from codes
in Σ*

C to theories. The pair (ΣC, 𝑓) is called an encoding.

Definition 12 (Encoding). An encoding (ΣC, 𝑓) comprises
a finite alphabet ΣC and a partial function 𝑓 : Σ*

C ⇀ ThL.

Given an encoding (ΣC, 𝑓), a word 𝑤 ∈ Σ*
C represents a

theory 𝒦, if 𝑓(𝑤) is defined and 𝑓(𝑤) = 𝒦. Observe that a
theory might have more than one code, whereas for others
there might not exist a code. For instance, in the example
above for finite bases, the codes 𝑐1 and 𝑐2 represent the
same theory. On the other hand, recall that the LTL theory
corresponding to “John swims every two days” cannot be
expressed in the finite base encoding. Furthermore, the func-
tion 𝑓 is partial, because not all codes in Σ*

C are meaningful.
For instance, for the finite base encoding, the code {{}}
cannot be interpreted as a finite base.

We are interested in logics which are AGM compliant,
that is, logics in which rational contraction functions exist.
Unfortunately, it is still an open problem how to construct
AGM contraction functions in all such logics. The most gen-
eral constructive apparatus up to date, as discussed in Sec-
tion 3, are the Exhaustive Contraction functions proposed
by Ribeiro et al. (2018) which assume only few conditions on
the logic. Additionally, we focus on non-finitary logics, as
the finitary case is trivial. We call such logics compendious.

Definition 13 (Compendious Logics). A logic L is compen-
dious if L is Tarskian, Boolean, non-finitary and satisfies:



(Discerning) For all sets 𝑋,𝑌 ⊆ CCTL, we have that⋂︀
𝑋 =

⋂︀
𝑌 implies 𝑋 = 𝑌 .

Compendiousness amounts to expressivity in multiple di-
mensions. Compendious logics can express infinitely many
distinct sentences (non-finitary), distinguish between a sen-
tence being true or false (classical negation), and express
uncertainty of two or more sentences (disjunction). The
property (Discerning) is related the possible worlds seman-
tics. In a possible world, the truth values of all sentences are
known. From this perspective, possible worlds correspond
to CCTs. Under the possible worlds semantics, an agent’s
epistemic state is interpreted as the exact set of all possi-
ble worlds in which all the agent’s beliefs are true. If the
truth value of a formula 𝜙 is unknown, the agent considers
some possible worlds where 𝜙 is true, as well as possible
worlds where 𝜙 is false. Hence, more possible worlds indi-
cate strictly less information. Equivalently, different sets of
possible worlds represent different epistemic states. This is
exactly what (Discerning) conceptualises.

Example 14 (Discerning). Yara and Yasmin encounter a
large flightless bird. Yara knows that such birds exist in Africa
and South America. Hence, Yara considers two possible worlds:
the bird is from Africa (it is an ostrich), or the bird is from
South America (it is a rhea). Yasmin, who lived in Australia,
believes the bird is an emu (from Australia), a rhea or an os-
trich. Since Yara and Yasmin consider different sets of possible
worlds, their epistemic states differ. Yara believes in the dis-
junction ostrich∨rhea , Yasmin does not. She believes only in
the disjunction ostrich ∨ rhea ∨ emu . As per (Discerning),
Yara and Yasmin present different epistemic states, due to the
difference in the considered possible worlds.

The class of compendious logics is broad and includes
several widely used logics.

Theorem 15. The logics LTL, CTL, CTL*, 𝜇-calculus and
monadic second-order logic (MSO) are compendious.

It turns out that there is no method of finite representation
capable of capturing all theories in a compendious logic.

Theorem 16. No encoding can represent every theory of a
compendious logic.

Proof Sketch. We show that, since compendious logics are
Tarskian, Boolean and non-finitary, there exist infinitely
many CCTs. From (Discerning), it follows that there ex-
ist uncountably many theories in the logic. However, an
encoding can represent only countably many theories.

As not every theory cann be finitely represented, only
some subsets of theories can be used to express the epistemic
states of an agent. We call a subset E of theories an excerpt
of the logic. Each encoding induces an excerpt.

Definition 17. The excerpt induced by an encoding (ΣC, 𝑓)
is the set E := img(𝑓). An excerpt induced by some encoding
is called finitely representable.

5. The Büchi Encoding of LTL
The encoding in which epistemic states are expressed is of
fundamental importance. On the one hand, the encoding
must be expressive enough to capture a non-trivial space
of epistemic states. On the other hand, the encoding must

Büchi automaton𝐴𝒦 :

𝑞0 𝑞1 𝑞2

∅,{𝑝}

∅,{𝑝}
{𝑝}

∅, {𝑝}

Supported Formulae:

F 𝑝 ∈ 𝒮(𝐴𝒦)

GF 𝑝 ∈ 𝒮(𝐴𝒦)

F (𝑝 → X 𝑝 ∨ X
2
𝑝) ∈ 𝒮(𝐴𝒦)

G 𝑝,¬(G 𝑝) /∈ 𝒮(𝐴𝒦)

Figure 3: A Büchi automaton, along with some examples of
supported (and not supported) LTL formulae.

support reasoning. Most fundamentally, an agent should
be able to decide whether it believes a given formula 𝜙, i.e.,
whether 𝜙 is entailed by the theory representing the agent’s
epistemic state. This question might be decidable for one
(perhaps less expressive) encoding, but undecidable for a
different (more expressive) encoding. We call this question
the entailment problem on an encoding (ΣC, 𝑓):

Input: (𝑤,𝜙) ∈ Σ*
C × FmL, such that 𝑓(𝑤) is defined

Output: true if 𝜙 ∈ 𝑓(𝑤), otherwise false

This problem is a generalisation of several decision prob-
lems that support reasoning. For example, on the finite base
encoding, it corresponds to the usual entailment problem
between formulae. Entailment on the encoding based on
finite sets of models corresponds to the model checking
problem. For other encodings, as we will see, it can be more
general than either of these problems.

We investigate a suitable encoding for epistemic states
over LTL, a commonly used compendious logic in model
checking and planning. In both these domains, the primary
approach to reason about LTL is based on Büchi automata.
Thus, from a reasoning standpoint, Büchi automata are
predestined to be the basis for an encoding of epistemic
states over LTL. We give the following definition for the set
of LTL formulae represented by a Büchi automaton:

Definition 18 (Support). The support of a Büchi automaton
𝐴 is the set 𝒮(𝐴) := {𝜙 ∈ FmLTL | ∀𝜋 ∈ ℒ(𝐴) . 𝜋 |= 𝜙 }.
If 𝜙 ∈ 𝒮(𝐴), we say that 𝐴 supports 𝜙.

Example 19. Figure 3 shows a Büchi automaton (on the
left), along with three supported formulae (on the right). All
accepted traces satisfy these formulae. The formula G 𝑝 is not
supported. While some accepted traces, such as {𝑝}𝜔 , satisfy
this formula, others, such as ∅ {𝑝}𝜔 do not. Consequently, the
negation ¬(G 𝑝) is not supported either.

It remains to show that the support of a Büchi automaton
is a theory. Perhaps surprisingly, the support of an arbi-
trary language of infinite traces (not represented as a Büchi
automaton) does not necessarily form a theory. The discon-
nect arises from the fact that the semantics of LTL is defined
over finite Kripke structures, and arbitrary languages of
infinite traces can represent more fine-grained nuances of
behaviours. Consider the language 𝐿prime = {𝑎0𝑎1𝑎2 . . .},
where 𝑎𝑖 = {𝑝} if 𝑖 is a prime number and 𝑎𝑖 = ∅ other-
wise. The support of𝐿prime prescribes that 𝑝 holds exactly in
prime-numbered steps. Since no Kripke structure satisfies
this requirement, the support of 𝐿prime is inconsistent, yet
𝐿prime does not support ⊥.

An intriguing property of Büchi automata however is
that their support is fully determined by those accepted
traces 𝜋 that have the property of being ultimately periodic,
that is, 𝜋 = 𝜌 𝜎𝜔 for some finite sequences 𝜌, 𝜎. Recall



from Section 2.2 that the superscript 𝜔 denotes infinite rep-
etition of the subsequence 𝜎. Ultimately periodic traces
are tightly connected to CCTs: each CCT is satisfied by
exactly one ultimately periodic trace. Let UP denote the
set of all ultimately periodic traces. The correspondence
between CCTs and ultimately periodic traces is formal-
ized by the function ThUP : UP → CCTLTL such that
ThUP (𝜋) = {𝜙 ∈ FmLTL | 𝜋 |= 𝜙}.

Lemma 20. The function ThUP is a bijection.

We combine Lemma 20 with two classical observa-
tions [11]: (i) every consistent LTL formula is satisfied by at
least one ultimately periodic trace; and (ii) every Büchi au-
tomaton with nonempty language accepts some ultimately
periodic trace. We arrive at the following characterization:

Lemma 21. The support of a Büchi automaton 𝐴 satisfies

𝒮(𝐴) =
⋂︁

{ThUP (𝜋) | 𝜋 ∈ ℒ(𝐴) ∩UP } .

Theorem 22. The support of a Büchi automaton is a theory.

Thus, Büchi automata indeed define an encoding. Ev-
ery Büchi automaton 𝐴, being a finite structure, can be
described in a finite code word 𝑤𝐴, which the encoding
maps to the theory 𝒮(𝐴). We call this encoding the Büchi
encoding, denoted (ΣBüchi, 𝑓Büchi), and the induced excerpt
the Büchi excerpt EBüchi. In terms of expressiveness, the
Büchi excerpt strictly subsumes the classical approaches:

Theorem 23. Let Ebase and Emodels denote respectively the
excerpts of finite bases and finite sets of models2. It holds that
Ebase ∪ Emodels ⊊ EBüchi.

Proof Sketch. The expressiveness of the Büchi excerpt fol-
lows from Proposition 8. Figure 3 shows an automaton
whose support can be expressed neither by a finite base nor
a finite sets of models.

In terms of reasoning, the Büchi encoding benefits from
the decidability properties of Büchi automata. Many deci-
sion problems, most importantly the entailment problem on
the Büchi encoding, can be reduced to the decidable problem
of inclusion between Büchi automata.

Theorem 24. The entailment problem on the Büchi encoding
is decidable.

Proof. Given a word 𝑤 ∈ Σ*
Büchi that encodes a Büchi au-

tomaton𝐴𝑤 , and an LTL formula𝜙, one can decide whether
𝜙 ∈ 𝑓Büchi(𝑤) = 𝒮(𝐴𝑤) by deciding the Büchi automata
inclusion ℒ(𝐴𝑤) ⊆ ℒ(𝐴𝜙).

Beyond ensuring the decidability of key problems, an en-
coding’s suitability for reasoning also involves the question
whether modifications of epistemic states can be realized
by computations on code words. In particular in the con-
text of the AGM paradigm, it is interesting to see if belief
change operations can be performed in such a manner. The
Büchi encoding also shines in this respect, since we can
employ automata operations to this end. As a first exam-
ple, consider the expansion of a theory 𝒦 with a formula 𝜙.
This operation corresponds to an intersection operation on
Büchi automata, as the support of a Büchi automaton satis-
fies 𝒮(𝐴) + 𝜙 = 𝒮(𝐴 ⊓𝐴𝜙). The intersection automaton
𝐴 ⊓𝐴𝜙 can be computed through a product construction.
2These excerpts were described in the prologue of Section 4.

By contrast, the following two sections discuss funda-
mental limitations to effective constructions for rational
contractions. Nevertheless, we show in Section 8 how the
Büchi encoding admits similar automata-based construc-
tions for a large subclass of contraction functions.

6. AGM Accommodation
Assume that the space of epistemic states that an agent can
entertain is determined by an excerpt E. In this section,
we investigate which properties make an excerpt suitable
from the AGM vantage point. Clearly, not every excerpt is
suitable for representing the space of epistemic states. For
example, if a non-tautological formula 𝜙 appears in each
theory of E, then 𝜙 cannot be contracted. The chosen ex-
cerpt should be expressive enough to describe all relevant
epistemic states that an agent might hold in response to its
beliefs in flux. Precisely, if an agent is confronted with a
piece of information and changes its epistemic state into
a new one, then this new epistemic state must be express-
ible in the underlying excerpt. A straightforward option
would be to require some sort of closure under AGM ratio-
nality, that is, all possible rational contractions involving
information in the excerpt should be expressed yet within
the excerpt. Such excerpts are closed under rational con-
traction resp. under fully rational contraction. We say that a
contraction .− remains in E if img(

.−) ⊆ E.

Definition 25 (Closedness). An excerpt E of a logic L is
closed under (fully) rational contraction iff for all theories
𝒦 ∈ E, every (fully) rational contraction operation on 𝒦
remains in E.

Closedness maximises the expressiveness of the excerpt
w.r.t. AGM rationality: in each epistemic state of the excerpt,
every possible (fully) AGM rational contraction outcome is
at disposal. However, although closedness might seem like
a reasonable condition, it turns out to be very demanding.
For example, as we are dealing with Boolean logics, which
are closed under classical negation, an agent should be able
to either accept or reject some pieces of information. The
excerpt should be broad enough such that there exists some
piece of information 𝜙, where both 𝜙 and ¬𝜙 occur in some,
possible different, epistemic states of the excerpt. We call
such excerpts open-minded. Even under such an innocuous
condition, an agent cannot express its epistemic states in an
excerpt that is closed under rational contraction: closedness
rules out finite representability.

Theorem 26 (Impossibility of Closedness). If E is an open-
minded, finitely representable excerpt of a compendious logic,
then E is not closed under rational contraction.

Proof Sketch. From open-mindedness, it follows that there
exists a formula 𝜙 in a theory 𝒦 of the excerpt, such that
𝜔(𝜙) is infinite. Then there are already uncountably many
ways to contract 𝜙. However, the finitely representable
excerpt contains only countably many theories.

The negative result above concerns excerpts that are
closed under rational contraction. As full rationality is
strictly more demanding than rationality, one could hope
to reach closedness by restricting to excerpts closed under
fully rational contraction. Unfortunately, rationally closed
excerpts and fully rationally closed excerpts coincide.



Proposition 27. An excerpt is closed under fully rational
contraction iff it is closed under rational contraction.

Instead of insisting on maximising the expressiveness of
the excerpts, we impose a weaker condition and require the
excerpt only to admit at least one rational outcome for each
possible contraction.

Definition 28 (Accommodation). An excerpt E accommo-
dates (fully) rational contraction iff for each 𝒦 ∈ E there
exists a (fully) rational contraction on 𝒦 that remains in E.

Accommodation guarantees that an agent can modify its
beliefs rationally, in all possible epistemic states covered by
the excerpt. There is a clear connection between accom-
modation and AGM compliance. While AGM compliance
concerns existence of rational contraction operations in ev-
ery theory of a logic, accommodation guarantees that the
information in each theory within the excerpt can be ratio-
nally contracted and that its outcome can yet be expressed
within the excerpt. Analogous to closedness, rational ac-
commodation and fully rational accommodation coincide.

Proposition 29. An excerpt E accommodates rational con-
traction iff E accommodates fully rational contraction.

7. Uncomputability of Contraction
Accommodation is the weakest condition we can impose
upon an excerpt to guarantee the existence of AGM rational
contractions. Yet, the existence of contractions does not im-
ply that an agent can effectively contract information. Thus
we investigate the question of computability of contraction
functions. For this endeavor, the focus on contraction func-
tions that remain in the excerpt is crucial: both input and
output of a computation must be finitely representable. We
thus fix a finitely representable excerpt E that accommo-
dates contraction. As an agent has to reason about its beliefs,
it should be able to decide whether two formulae are logi-
cally equivalent. Hence, we assume that, in the underlying
logic, logical equivalence is decidable.

Definition 30 (AGM Computability). Let 𝒦 be a theory in
E, and let .− be a contraction function on 𝒦 that remains in
E. We say that .− is computable if there exists an encoding
(ΣC, 𝑓) that induces E, such that the following problem is
computed by a Turing machine:

Input: A formula 𝜙 ∈ FmL.

Output: A word 𝑤 ∈ Σ*
C such that 𝑓(𝑤) = 𝒦 .− 𝜙.

In the classical setting of finitary logics, computability of
AGM contraction is trivial, as there are only finitely many
formulae (up to equivalence), and only a finite number of
theories. By contrast, compendious logics have infinitely
many formulae (up to equivalence) and consequently in-
finitely many theories.

In the following, unless otherwise stated, we only con-
sider compendious logics. In such logics, we distinguish
two kinds of theories: those that contain infinitely many
formulae (up to equivalence), and those that contain only
finitely many formulae (up to equivalence). An excerpt
that constrains an agent’s epistemic states to the latter case
essentially disposes of the expressive power of the compen-
dious logic, as in each epistemic state only finitely many
sentences can be distinguished. Therefore, such epistemic

states could be expressed in a finitary logic. As the com-
putability in the finitary case is trivial, we focus on the more
expressive case.

Definition 31 (Non-Finitary). A theory 𝒦 is non-finitary
if it contains infinitely many logical equivalence classes of
formulae.

Note that being non-finitary is a very general condition.
Even theories with a finite base can be non-finitary. For
instance, the LTL theory Cn(G 𝑝) contains the infinitely
many non-equivalent formulae {𝑝,X 𝑝,X2 𝑝,X3 𝑝, . . .}.

In the remainder of this section, we establish a strong
link between non-finitary theories and uncomputable con-
traction functions. To this end, we introduce the notion of
cleavings.

Definition 32 (Cleaving). A cleaving is an infinite set of
formulae 𝒞 such that for all two distinct 𝜙,𝜓 ∈ 𝒞 we have:

(CL1) 𝜙 and 𝜓 are not equivalent (𝜙 ̸≡ 𝜓); and

(CL2) the disjunction 𝜙 ∨ 𝜓 is a tautology.

From an algebraic perspective, the formulae in a cleaving
behave like a kind of weak complement: we require that the
disjunction 𝜙∨𝜓 is a tautology, whereas we do not require
the conjunction 𝜙 ∧ 𝜓 to be inconsistent (as would be the
case for the conjunction 𝜙 ∧ ¬𝜙).

Example 33. Consider the logic of elementary arithmetic
over natural numbers. The formulae 𝑥 ̸= 0, 𝑥 ̸= 1, 𝑥 ̸= 2,
etc. form a cleaving: they are pairwise non-equivalent, and
every disjunction (𝑥 ̸= 𝑖) ∨ (𝑥 ̸= 𝑗) is a tautology (where
𝑖, 𝑗 are two different constants).

Example 34. Let twice(𝑝) :≡ F (𝑝 ∧ XF 𝑝) be the LTL
formula denoting that proposition 𝑝 holds at least twice, and
for 𝑖 ∈ N, let 𝜓𝑖 :≡ (X𝑖 𝑝) → twice(𝑝) be the formula
stating that if 𝑝 holds in time step 𝑖, it must hold at least
one additional time (i.e., at least twice overall). For 𝑖 ̸= 𝑗,
the formulae 𝜓𝑖 and 𝜓𝑗 are non-equivalent. Further, the
disjunction𝜓𝑖∨𝜓𝑗 simplifies to (X𝑖 𝑝)∧(X𝑗 𝑝) → twice(𝑝).
The latter formula is a tautology: if 𝑝 holds in time steps
𝑖 and 𝑗, it holds at least twice. Hence, the set of formulae
{𝜓0, 𝜓1, . . .} is a cleaving.

Lemma 35. Every non-finitary theory contains a cleaving.

Given a contraction that remains in an excerpt, cleavings
provide a way of generating many different contractions
that remain within the excerpt. This works by ranking the
formulae in the cleaving such that each rank has exactly
one formula. We reduce the contraction of a formula 𝜙 to
contracting 𝜙∨𝜓, where 𝜓 is the lowest ranked formula in
the cleaving such that 𝜙 ∨ 𝜓 is non-tautological. Each new
contraction depends on the original choice function and the
ranking.

Definition 36 (Composition). Let 𝛿 be a choice function
on a theory 𝒦, 𝒞 ⊆ 𝒦 be a cleaving, and 𝜋 : N → 𝒞 be a
permutation of 𝒞. The composition of 𝛿 and 𝜋 is the function
𝛿𝜋 : Fm → 𝒫(CCT) such that

𝛿𝜋(𝜙) := 𝛿
(︀
𝜙 ∨min𝜋(𝜙)

)︀
where min𝜋(𝜙) = 𝜋(𝑖), for the minimal 𝑖 ∈ N such that
𝜙 ∨ 𝜋(𝑖) ̸≡ ⊤, or min𝜋(𝜙) = ⊥ if no such 𝑖 exists.



Example 37. Consider the cleaving {𝜓0, 𝜓1, . . .} of Exam-
ple 34, and let 𝜋 be the permutation with 𝜋(𝑖) = 𝜓𝑖 for all
𝑖 ∈ N. The formula 𝑝 ∨ 𝜓0 is a tautology. Thus, we have
min𝜋(𝑝) = 𝜋(1) = 𝜓1 and the choice function chooses
𝛿𝜋(𝑝) = 𝛿(𝑝 ∨ 𝜓1). If we however consider a permuta-
tion 𝜋′ with 𝜋′(0) = 𝜓2 and 𝜋′(2) = 𝜓0, then we have
min𝜋′(𝑝) = 𝜋′(0) = 𝜓2 and 𝛿𝜋′(𝑝) = 𝛿(𝑝 ∨ 𝜓2).

If we consider the formula FG¬𝑝 stating that 𝑝 only holds
finitely often, any disjunction of the form (FG¬𝑝)∨𝜓𝑖 is a
tautology: either there are only finitely many occurrences of
𝑝, or otherwise, 𝑝 holds infinitely often, and so 𝑝 holds at least
twice. Hence, we have, for both permutations, 𝛿𝜋(FG¬𝑝) =
𝛿𝜋′(FG¬𝑝) = 𝛿

(︀
(FG¬𝑝) ∨ ⊥

)︀
= 𝛿(FG¬𝑝).

The composition of a choice function 𝛿 with a permuta-
tion of a cleaving preserves rationality.

Lemma 38. The composition 𝛿𝜋 of a choice function 𝛿 and
a permutation 𝜋 : N → 𝒞 of a cleaving 𝒞 ⊆ 𝒦 is a choice
function.

A composition generates a new choice function which in
turn induces a rational contraction function that remains
within the excerpt. Yet, the induced contraction function is
not necessarily computable.

Theorem 39. Let E accommodate rational contraction, and
let 𝒦 ∈ E. The following statements are equivalent:

1. The theory 𝒦 is non-finitary.
2. There exists an uncomputable rational contraction

function on 𝒦 that remains in E.
3. There exists an uncomputable fully rational contrac-

tion function on 𝒦 that remains in E.

Proof Sketch. Let 𝒦 be non-finitary, and 𝛿 the choice func-
tion of a (fully) rational contraction for 𝒦 that remains in E.
Each permutation 𝜋 of a cleaving 𝒞 ⊆ 𝒦 induces a distinct
(fully) rational contraction (with choice function 𝛿𝜋) that
remains in E. At most countably many of these uncountably
many (fully) rational contractions can be computable.

If 𝒦 is finitary, every contraction function is computable,
as it only has to consider finitely many formulae.

Theorem 39 makes evident that uncomputability of AGM
contraction is inevitable. In fact, there are uncountably
many uncomputable contraction functions. The only way
to avoid this uncomputability would be to restrain the ex-
pressiveness of the excerpt to the most trivial case: only
finitary theories.

8. Effective Contraction in the Büchi
Excerpt

Despite the strong negative result of Section 7, computability
can still be harnessed in very particular excerpts: excerpts
E in which for every theory, there exists at least one com-
putable (fully) rational contraction function that remains in
E. We say that such an excerpt E effectively accommodates
(fully) rational contraction. If belief contraction is to be com-
puted for compendious logics, it is paramount to identify
such excerpts as well as classes of computable contraction
functions. In this section, we show that the Büchi excerpt of
LTL effectively accommodates (fully) rational contraction.

For a contraction on a theory 𝒦 ∈ EBüchi to remain in
the Büchi excerpt, the underlying choice function must be

𝐴¬GF 𝑝:

𝑝1 𝑝2
∅

∅, {𝑝} ∅

𝛾(GF 𝑝):

𝑧1 𝑧2 𝑧3
{𝑝}

∅, {𝑝}

∅

∅

𝐴𝒦 ⊔ 𝛾(GF 𝑝):

𝑧1 𝑧2 𝑧3

𝑞0 𝑞1 𝑞2

{𝑝}

∅, {𝑝}

∅

∅

∅, {𝑝}

∅, {𝑝}
{𝑝}

∅, {𝑝}

Figure 4: BCF contraction of GF 𝑝 from 𝒮(𝐴𝒦) (Example 43).

designed such that the intersection of 𝒦 with the selected
CCTs corresponds to the support of a Büchi automaton. As
CCTs and ultimately periodic traces are interchangeable
(Lemma 20), and the support of a Büchi automaton is deter-
mined by the CCTs corresponding to its accepted ultimately
periodic traces (Lemma 21), a solution is to design a selec-
tion mechanism, analogous to choice functions, that picks a
single Büchi automaton instead of an (infinite) set of CCTs.

Definition 40 (Büchi Choice Functions). A Büchi choice
function 𝛾 maps each LTL formula to a single Büchi automa-
ton, such that for all LTL formulae 𝜙 and 𝜓,

(BF1) the language accepted by 𝛾(𝜙) is non-empty;

(BF2) 𝛾(𝜙) supports ¬𝜙, if 𝜙 is not a tautology; and

(BF3) 𝛾(𝜙) and 𝛾(𝜓) accept the same language, if 𝜙 ≡ 𝜓.

Conditions (BF1) - (BF3) correspond to the respective
conditions (CF1) - (CF3) in the definition of choice functions.
Each Büchi choice function induces a contraction function.

Definition 41 (Büchi Contraction Functions). Let 𝒦 be a
theory in the Büchi excerpt and let 𝛾 be a Büchi choice function.
The Büchi Contraction Function (BCF) on 𝒦 induced by 𝛾 is
the function

𝒦 .−𝛾 𝜙 =

{︃
𝒦 ∩ 𝒮(𝛾(𝜙)) if 𝜙 /∈ Cn(∅) and 𝜙 ∈ 𝒦
𝒦 otherwise

All such contractions remain in the Büchi excerpt. Indeed,
one can observe that if 𝒦 = 𝒮(𝐴) for a Büchi automaton
𝐴, it holds that 𝒦 ∩ 𝒮(𝛾(𝜙)) = 𝒮(𝐴 ⊔ 𝛾(𝜙)). Recall from
Section 2 that ⊔ denotes the union of Büchi automata. The
class of all rational contraction functions that remain in the
Büchi excerpt corresponds exactly to the class of all BCFs.

Theorem 42. A contraction function .− on a theory
𝒦 ∈ EBüchi is rational and remains within the Büchi excerpt
if and only if .− is a BCF.

Example 43. Let 𝒦 = 𝒮(𝐴𝒦), for the Büchi automaton
𝐴𝒦 shown in Fig. 3. To contract the formula GF 𝑝, a Büchi
choice function 𝛾 may select the Büchi automaton 𝛾(GF 𝑝)
shown in Fig. 4. This automaton supports ¬GF 𝑝; the au-
tomaton 𝐴¬GF 𝑝 is shown for reference. In fact, 𝛾(GF 𝑝)
accepts precisely the traces satisfying 𝑝 ∧ ¬GF 𝑝. The re-
sult of the contraction is the theory 𝒮(𝐴𝒦) ∩ 𝒮(𝛾(GF 𝑝)),
which corresponds to the theory 𝒮(𝐴𝒦 ⊔ 𝛾(GF 𝑝)), whose
supporting automaton is also shown in Fig. 4. The union ⊔ is
obtained by simply taking the union of states and transitions.
This automaton does not support GF 𝑝, and therefore the
contraction is successful.



As BCFs capture all rational contractions within the ex-
cerpt, it follows from Theorem 39 that not all BCFs are
computable. Note from Definition 41 that to achieve com-
putability, it suffices to be able to: (i) decide if 𝜙 is a tau-
tology, (ii) decide if 𝜙 ∈ 𝒦, (iii) compute the underlying
Büchi choice function 𝛾, and (iv) compute the intersection
of 𝒦 with the support of 𝛾(𝜙). We already know that con-
ditions (i) and (ii) are satisfied (Theorem 24). For condi-
tion (iv), recall that the intersection of the support of two
automata is equivalent to the support of their union. As 𝛾
produces a Büchi automaton, and union of Büchi automata
is computable, condition (iv) is also satisfied. Therefore,
condition (iii) is the only one remaining. It turns out that
(iii) is a necessary and sufficient condition to characterize all
computable contraction functions within the Büchi excerpt.

Theorem 44. Let .− be a rational contraction function on
a theory 𝒦 ∈ EBüchi, such that .− remains in the Büchi ex-
cerpt. The operation .− is computable iff .− =

.−𝛾 for some
computable Büchi choice function 𝛾 .

Note that there do indeed exist computable choice func-
tions. As an example, the full meet contraction [1, 3] is
computable. The corresponding Büchi choice function 𝛾fm
is given by 𝛾fm(𝜙) = 𝐴¬𝜙 if 𝜙 is non-tautological, and
𝛾fm(𝜙) = 𝐴⊤ otherwise. This function is computable: the
automata𝐴¬𝜙 and𝐴⊤ can be effectively constructed, and it
is decidable whether the given LTL formula 𝜙 is a tautology.

As the full meet contraction is fully rational, we conclude
that the Büchi excerpt effectively accommodates (fully) ra-
tional contraction.

9. Conclusion
We have investigated the computability of AGM contraction
for the class of compendious logics, which embrace several
logics used in computer science and AI. Due to the high
expressive power of these logics, not all epistemic states
admit a finite representation. Hence, the epistemic states
that an agent can assume are confined to a space of theo-
ries, which depends on a method of finite representation.
We have shown a severe negative result: no matter which
form of finite representation we use, as long as it does not
collapse to the finitary case, AGM contraction suffers from
uncomputability. Precisely, there are uncountably many
uncomputable (fully) rational contraction functions in all
such expressive spaces. This negative result also impacts
other forms of belief change. For instance, belief revision
is interdefinable with belief contraction, via the Levi Iden-
tity. Therefore, it is likely that revision also suffers from
uncomputability. Accordingly, uncomputability might span
to iterated belief revision [41] , update and erasure [42], and
pseudo-contraction [43], to cite a few. It is worth investigat-
ing uncomputability of these other operators.

In this work, we have focused on the AGM paradigm,
and logics which are Boolean. We intend to expand our
results for a wider class of logics by dispensing with the
Boolean operators, and assuming only that the logic is AGM
compliant. We believe the results shall hold in the more
general case, as our negative results follow from cardinal-
ity arguments. On the other hand, several logics used in
knowledge representation and reasoning are not AGM com-
pliant, as for instance a variety of Description Logics [12].
In these logics, the recovery postulate (K−

5 ) can be replaced
by the relevance postulate [44], and contraction functions

can be properly defined. Such logics are called relevance-
compliant. As relevance is an weakened version of recovery,
the uncomputability results in this work translate to var-
ious relevance-compliant logics. However, it is unclear if
all such logics are affected by uncomputability. We aim to
investigate this issue in such logics.

Even if we have to coexist with uncomputability, we can
still identify classes of operators which are guaranteed to be
computable. To this end, we have introduced a novel class
of contraction functions for LTL using Büchi automata, and
identified the conditions needed for computability. This is
an initial step towards the application of belief change in
other areas, such as methods for automatically repairing
systems [45]. The methods devised here for LTL form a
foundation for the development of analogous strategies for
other expressive logics, such as CTL, 𝜇-calculus and many
Description Logics. For example, in these logics, similarly to
LTL, decision problems such as satisfiability and entailment
have been solved using various kinds of automata, such as
tree automata [46, 47].
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A. Proofs for Section 2
(Logics and Automata)
L is Boolean if for every 𝜙,𝜓 ∈ Fm there exist formulae
¬𝜙 resp. 𝜙 ∨ 𝜓 such that:

(¬𝑇 ) Cn({𝜙}) ∩ Cn({¬𝜙}) = Cn(∅)

(¬𝐼 ) Cn({𝜙,¬𝜙}) = Fm

(∨𝐼 ) If 𝜙 ∈ Cn(𝑋) then (𝜙 ∨ 𝜓) ∈ Cn(𝑋)

(∨𝐸) If 𝛼 ∈ Cn(𝑋 ∪ {𝜙}) and 𝛼 ∈ Cn(𝑋 ∪ {𝜓}), then
𝛼 ∈ Cn(𝑋 ∪ {𝜙 ∨ 𝜓})

for all formulae 𝛼,𝜙, 𝜓 and all sets of formulae 𝑋 ; and that
𝒦 =

⋂︀
{𝒦′ ∈ CCTL | 𝒦 ⊆ 𝒦′ } for every theory 𝒦.

Observation 5. LTL is Tarskian and Boolean.

Proof. It is easy to show that LTL is Tarskian. Regarding
the Boolean operators, the disjunction is straightforward.
The only interesting aspect is negation:

(¬𝑇 ) Let 𝜓 ∈ Cn(𝜙) ∩ Cn(¬𝜙), and let 𝑀 be a Kripke
structure. Assume 𝑀 ̸|= 𝜓. Then there exists an ul-
timately periodic trace 𝜋 of𝑀 such that 𝜋 ̸|= 𝜓. But
then the Kripke structure 𝑀𝜋 with Traces(𝑀𝜋) =
{𝜋} either satisfies 𝜙 or ¬𝜙, and in either case it fol-
lows that 𝑀𝜋 |= 𝜓. Thus we have a contradiction,
and it must indeed be the case that every Kripke
structure 𝑀 satisfies 𝜓. Hence 𝜓 ∈ Cn(∅).

(¬𝐼 ) Let 𝜙 ∈ FmLTL. Since there is no Kripke struc-
ture such that 𝑀 |= 𝜙 and 𝑀 |= ¬𝜙, we can
conclude that all such models satisfy 𝜓. Hence
𝜓 ∈ Cn({𝜙,¬𝜙}).

Note that our notion of negation, in particular (¬𝑇 ), is
weaker than requiring𝑀 |= 𝜙 or𝑀 |= ¬𝜙 for all formulae
𝜙, a property not satisfied by LTL.

Proposition A.1 ([11]). Ifℒ(𝐴) is nonempty, then𝐴 accepts
an ultimately periodic word.

B. Proofs for Section 4
(Limits of Finite Representation)
Proposition B.1. The theory Cn(F 𝑝) is not expressible via
a finite set of models.

Proof. Suppose there was a finite set of models, i.e., Kripke
structures {𝑀1, . . . ,𝑀𝑛} such that

{𝜙 ∈ FmLTL |𝑀𝑖 |= 𝜙, for 𝑖 = 1, . . . , 𝑛 } = Cn(F 𝑝)

Each Kripke structure 𝑀𝑖 has some finite number of states
𝑚𝑖. Clearly, we must have 𝑀𝑖 |= F 𝑝. It follows that for
every trace of 𝑀𝑖, 𝑝 must hold at least once within the first
𝑚𝑖 time steps: otherwise, there must be a cycle that can be
reached and traversed without encountering an occurrence
of 𝑝. If this were the case, there would also be an infinite
trace corresponding to infinite repetition of this cycle, where
𝑝 never holds; this would contradict 𝑀𝑖 |= F 𝑝.

Let now 𝑚 be the maximum over all 𝑚𝑖 for 𝑖 = 1, . . . , 𝑛.
Then each of the models 𝑀𝑖 satisfies

⋁︀𝑚
𝑘=0 X

𝑘 𝑝. Thus,⋁︀𝑚
𝑘=0 X

𝑘 𝑝 is in the theory represented by the models
𝑀1, . . . ,𝑀𝑛. But this formula is not in Cn(F 𝑝), so we
arrive at a contradiction.

Lemma B.2. A Tarskian, Boolean logic L is (Discerning)
if and only if for every 𝒦 ∈ CCTL, there exists a formula 𝜙
with 𝒦 = Cn(𝜙).

Proof. Let L be a Tarskian, Boolean logic.

“⇒”: Assume that L satisfies (Discerning), i.e., that⋂︀
𝑋 =

⋂︀
𝑌 implies 𝑋 = 𝑌 for all sets 𝑋,𝑌 ⊆ CCTL.

Let 𝒦 be an arbitrary complete consistent theory.
Consider the set 𝑋 = CCT ∖ {𝒦}. By assumption, since

𝑋 ̸= CCT, it follows that
⋂︀
𝑋 ̸=

⋂︀
CCT = Cn(∅).

Consequently, there must exist some formula 𝛼 ∈
⋂︀
𝑋 ∖

Cn(∅).
Every CCT 𝒦′ ∈ 𝑋 contains 𝛼, and hence by consistency

we have that (¬𝛼) /∈ 𝒦′. However, since𝛼 is by assumption
non-tautological, there must exist some CCT that does not
contain it. The only choice is 𝒦, and so we conclude that
𝛼 /∈ 𝒦 and by completeness, (¬𝛼) ∈ 𝒦. It follows that

Cn(¬𝛼) =
⋂︁

{ 𝒦̂ ∈ CCT | Cn(¬𝛼) ⊆ 𝒦̂ } =
⋂︁

{𝒦} = 𝒦

Thus we have shown for an arbitrary CCT 𝒦, that there ex-
ists a formula 𝜙 (namely, 𝜙 :≡ ¬𝛼) such that 𝒦 = Cn(𝜙).

“⇐”: Assume that for every 𝒦 ∈ CCTL, there exists a
formula 𝜙 such that 𝒦 = Cn(𝜙). To show that L satisfies
(Discerning), we proceed by contraposition. To this end,
let 𝑋,𝑌 ⊆ CCTL such that 𝑋 ̸= 𝑌 . Wlog. there exists
some 𝒦 ∈ 𝑋 ∖𝑌 . By assumption, there exists some formula
𝜙 ∈ FmL such that 𝒦 = Cn(𝜙).

Let 𝒦′ be any CCT other than 𝒦. If it were the case that
𝜙 ∈ 𝒦′, it would follow that 𝒦 ⊆ 𝒦′. But this is a contra-
diction, as any strict superset of 𝒦 must be inconsistent.

Thus for any CCT 𝒦′ other than 𝒦, it holds that 𝜙 /∈ 𝒦′

and hence (¬𝜙) ∈ 𝒦′. It follows that the formula ¬𝜙 is in
the intersection

⋂︀
𝑌 (since 𝒦 /∈ 𝑌 ) but not in

⋂︀
𝑋 (since

𝒦 ∈ 𝑋). We conclude that
⋂︀
𝑋 ̸=

⋂︀
𝑌 .

Theorem 15. The logics LTL, CTL, CTL*, 𝜇-calculus and
monadic second-order logic (MSO) are compendious.

Proof. We refer to [11] for the definition of syntax and se-
mantics of CTL, CTL* and the 𝜇-calculus, and to [23] for
MSO (there called SC). From these definitions, it is easy to
see that these logics are Tarskian and Boolean. To show that
they are non-finitary, it suffices to find an infinite set of pair-
wise non-equivalent formulae. For the case of LTL, such a
set is for instance given for instance by {𝑝,X 𝑝,X2 𝑝, . . .}.
It remains to show that the logics satisfy (Discerning).

We begin by proving this for CTL. The same proof also
applies directly to CTL* and 𝜇-calculus (noting that CTL
can be embedded in both these logics). Browne et al. [48]
show that CTL formulae can characterize Kripke structures
up to bisimilarity. More precisely, for every Kripke struc-
ture 𝑀 , there exists a CTL formula 𝜙𝑀 such that 𝜙𝑀 is
satisfied precisely by Kripke structures that are bisimilar
to 𝑀 . They also show that bisimilar Kripke structures in
general satisfy the same CTL formulae. From these results,
it follows that every CCT of CTL has a finite base, and thus
by Lemma B.2, (Discerning) follows. We first show that
every Kripke structure with a single initial state induces a
CCT, and conversely, that every CCT is induced by a Kripke
structure with a single state. The first part is trivial, as it fol-
lows directly from the semantics of negation (in CTL) that
for every formula 𝜙 and every Kripke structure 𝑀 with a



single initial state, we have that𝑀 |= 𝜙 or𝑀 |= ¬𝜙. Thus
the set of formulae satisfied by 𝑀 is a complete consistent
theory. Let now 𝒦 be a CCT. Since 𝒦 is consistent, it is
satisfied by some Kripke structure 𝑀 . Wlog. we assume
that 𝑀 has only a single initial state: If not, we make all
but one state non-initial; preserving satisfaction of 𝒦. Then,
by the result of Browne et al. [48], there exists a CTL for-
mula 𝜙𝑀 characterizing 𝑀 up to bisimilarity. Since 𝒦 is
complete, either 𝜙𝑀 ∈ 𝒦 or (¬𝜙𝑀 ) ∈ 𝒦. But the latter
would contradict 𝑀 |= 𝒦, hence we know that 𝜙𝑀 ∈ 𝒦. It
follows that Cn(𝜙𝑀 ) ⊆ 𝒦, and since both are CCTs, this
means 𝒦 = Cn(𝜙𝑀 ).

It remains to prove (Discerning) for LTL and MSO. We
also achieve this by showing that every CCT has a finite
base. For LTL, this is shown in Lemmas 20 and C.2 below.
The proof for MSO is analogous, noting that LTL can be
embedded in MSO, and that MSO formulae can (like LTL
formulae) be expressed as Büchi automata [23].

Theorem 16. No encoding can represent every theory of a
compendious logic.

Proof. Since compendious logics are non-finitary, they have
infinitely many theories. As the logic is Boolean and
Tarskian, every theory can be described as a (possibly infi-
nite) intersection of CCTs. Thus, there must be infinitely
many CCTs. From (Discerning), it follows that intersec-
tions of different sets of CCTs always yield different theories.
As the powerset of the infinite set CCT is uncountable, we
conclude that there exist uncountably many theories in the
logic. However, an encoding can represent only countably
many theories.

C. Proofs for Section 5
(The Büchi Encoding of LTL)
As a basis for our results on LTL, we develop a tight con-
nection between ultimately periodic traces and complete
consistent formulae. We begin by defining formulae that
uniquely identify an ultimately periodic trace.

Lemma C.1 (Identifying Formulae). For every ultimately
periodic trace 𝜋, there exists an LTL formula id(𝜋) that is
satisfied by 𝜋 and not by any other trace.

Proof. Let 𝜋 = 𝜌 𝜎𝜔 be an ultimately periodic trace, where
𝜌 = 𝑎1 . . . 𝑎𝑛 and 𝜎 = 𝑏0 . . . 𝑏𝑚. We define the formula

id(𝜋) :≡
(︂ 𝑛⋀︁
𝑖=1

X𝑖−1 𝑎𝑖

)︂
∧
(︂ 𝑚⋀︁
𝑖=0

X𝑛+𝑖 𝑏𝑖

)︂
∧X𝑛G

(︂ ⋀︁
𝑎∈Σ

𝑎→ X𝑚+1 𝑎

)︂
where a letter 𝑎 ∈ Σ = 𝒫(AP) abbreviates the formula⋀︀
𝑝∈𝑎 𝑝 ∧

⋀︀
𝑝∈AP∖𝑎 ¬𝑝.

In this formula, the first conjunct establishes the (possibly
empty) prefix 𝑎1 . . . 𝑎𝑛. The second conjunct establishes
the subsequent (non-empty) sequence 𝑏0 . . . 𝑏𝑚. And finally,
the third conjunct describes the shape of the trace, i.e. that
after a prefix of length 𝑛 it becomes periodic with a period
of length 𝑚+ 1. Any trace that satisfies these constraints
is necessarily equal to 𝜋.

In Section 5, we define the function ThUP : UP →
CCTLTL with ThUP (𝜋) := {𝜙 ∈ FmLTL | 𝜋 |= 𝜙 }. This
function can also be expressed via identifying formulae.

Lemma C.2. It holds that ThUP (𝜋) = Cn(id(𝜋)).

Proof. Let 𝜙 ∈ ThUP (𝜋). Then 𝜋 |= 𝜙. Any Kripke struc-
ture 𝑀 that satisfies id(𝜋) must have Traces(𝑀) = {𝜋},
and hence 𝑀 also satisfies 𝜙. Therefore we conclude that
𝜙 ∈ Cn(id(𝜋)).

Conversely, let 𝜙 ∈ Cn(id(𝜋)). Consider a Kripke struc-
ture 𝑀𝜋 with Traces(𝑀𝜋) = {𝜋}. As 𝜋 is ultimately peri-
odic, such a Kripke structure (with a finite number of states)
exists. Then 𝑀𝜋 |= id(𝜋), so by assumption also 𝑀 |= 𝜙.
But this implies 𝜋 |= 𝜙 and thus 𝜙 ∈ ThUP (𝜋).

Lemma C.3. For every 𝜋 ∈ UP , ThUP (𝜋) is a complete
consistent theory. Hence, the function ThUP is well-defined.

Proof. Let 𝜋 = 𝜌 𝜎𝜔 be an ultimately periodic trace, where
𝜌 = 𝑎1 . . . 𝑎𝑛 and 𝜎 = 𝑏1 . . . 𝑏𝑛. From Lemma C.2, it
immediately follows that ThUP (𝜋) is a theory.

To show consistency, we identify a model (i.e., a finite
Kripke structure) that satisfies every formula in the the-
ory. In particular, we construct a Kripke structure 𝑀𝜋 =
(𝑆, 𝐼,→, 𝜆) with as follows: The set of states is given by
𝑆 = {𝑞1, . . . , 𝑞𝑛, 𝑝0, . . . , 𝑝𝑚} with initial states 𝐼 = {𝑞0}.
We define 𝜆(𝑞𝑖) = 𝑎𝑖 for 𝑖 ∈ {1, . . . , 𝑛}, and 𝜆(𝑝𝑗) = 𝑏𝑗
for 𝑗 ∈ {0, . . . ,𝑚}. Finally, → is the smallest relation with
𝑞𝑖 → 𝑞𝑖+1, 𝑞𝑛 → 𝑝0, 𝑝𝑗 → 𝑝𝑗+1 and 𝑝𝑚 → 𝑝0 for all
𝑖 ∈ {1, . . . , 𝑛− 1} and 𝑗 ∈ {0, . . . ,𝑚− 1}.

This Kripke structure only has a single trace, namely
Traces(𝑀𝜋) = {𝜋}. Thus it follows that𝑀𝜋 |= id(𝜋), and
consequently 𝑀𝜋 |= Cn(id(𝜋)) = ThUP (𝜋). Thereby we
have shown that ThUP (𝜋) is consistent.

It remains to show that ThUP (𝜋) is complete, i.e., for
every 𝜙 ∈ FmLTL, we must either have 𝜙 ∈ Cn(id(𝜋)) or
(¬𝜙) ∈ Cn(id(𝜋)). We distinguish two cases:

Case 1: 𝜋 |= 𝜙. Consider some Kripke structure 𝑀 such
that 𝑀 |= Cn(id(𝜋)). Then every trace of 𝑀 must
satisfy id(𝜋), i.e., it must hold that Traces(𝑀) =
{𝜋}. Since 𝜋 |= 𝜙, it follows that 𝑀 |= 𝜙.

This reasoning applies to any 𝑀 with 𝑀 |=
Cn(id(𝜋)), and thus we have shown that 𝜙 ∈
Cn(id(𝜋)).

Case 2: 𝜋 |= ¬𝜙. We show that (¬𝜙) ∈ Cn(id(𝜋)), anal-
ogously to the previous case.

Since one of these two cases always applies, for any 𝜙,
we have shown that ThUP (𝜋) is complete.

Lemma C.4. The function ThUP is injective.

Proof. Let 𝜋1, 𝜋2 ∈ UP be ultimately periodic traces such
that ThUP (𝜋1) = ThUP (𝜋2). Since 𝜋2 |= id(𝜋2) it fol-
lows that 𝜋2 |= 𝜙 for any 𝜙 ∈ Cn(id(𝜋2)) = ThUP (𝜋2).
But since id(𝜋1) ∈ ThUP (𝜋1), and the two theories are
equal, this means that 𝜋2 |= id(𝜋1). By Lemma C.1, we
conclude that 𝜋1 = 𝜋2. Thus the function ThUP is injec-
tive.

Lemma C.5. The function ThUP is surjective on CCTLTL.



Proof. Let 𝒦 be a complete consistent theory. Since 𝒦 is
consistent, there exists a Kripke structure𝑀 such that𝑀 |=
𝒦. Like any finite Kripke structure, 𝑀 contains at least
one ultimately periodic trace 𝜋. We will show that 𝒦 =
ThUP (𝜋), by considering each inclusion separately.

𝒦 ⊆ ThUP (𝜋): Let 𝜙 ∈ 𝒦. Since 𝑀 |= 𝒦 and 𝜋 ∈
Traces(𝑀), we know that 𝜋 |= 𝜙. It follows
that id(𝜋) |= 𝜙, and hence 𝜙 ∈ Cn(id(𝜋)) =
ThUP (𝜋).

ThUP (𝜋) ⊆ 𝒦: Let 𝜙 ∈ ThUP (𝜋). Then we know that
𝜋 |= 𝜙 and thus 𝜋 ̸|= ¬𝜙. It follows that also 𝑀 ̸|=
¬𝜙. Since 𝑀 |= 𝒦, this means that (¬𝜙) /∈ 𝒦. But
since 𝒦 is complete, we conclude that 𝜙 ∈ 𝒦.

Thereby we have shown that any CCT is equal to
ThUP (𝜋) for some ultimately periodic trace 𝜋, and thus
the function ThUP is surjective on CCTLTL.

Lemma 20. The function ThUP is a bijection.

Proof. This follows from Lemmas C.4 and C.5.

We have shown that in compendious logics, every CCT
𝒦 has a finite base, i.e., a formula 𝜙 with 𝒦 = Cn(𝜙).
Lemmas 20 and C.2 give us a concrete idea of these finite
bases for the case of LTL: every CCT of LTL is equal to
Cn(id(𝜋)), for some ultimately periodic trace 𝜋.

Next, we make use of this connection between CCTs and
ultimately periodic traces to characterize the support of a
Büchi automaton.

Lemma 21. The support of a Büchi automaton 𝐴 satisfies

𝒮(𝐴) =
⋂︁

{ThUP (𝜋) | 𝜋 ∈ ℒ(𝐴) ∩UP } .

Proof. Let 𝜙 ∈ 𝒮(𝐴). Then 𝜋 |= 𝜙 for each 𝜋 ∈ ℒ(𝐴),
and in particular, for each 𝜋 ∈ ℒ(𝐴) ∩ UP . Thus, 𝜙 ∈
ThUP (𝜋) for each such ultimately periodic 𝜋, and hence
𝜙 ∈

⋂︀
{ThUP (𝜋) | 𝜋 ∈ ℒ(𝐴) ∩UP }.

For the converse inclusion, let 𝜙 ∈
⋂︀
{ThUP (𝜋) | 𝜋 ∈

ℒ(𝐴) ∩ UP }. Then 𝜋 |= 𝜙 for each ultimately periodic
trace in ℒ(𝐴). Suppose there was a trace 𝜋′ that was
not ultimately periodic, such that 𝜋′ ̸|= 𝜙. Then the set
ℒ(𝐴) ∖ ℒ(𝐴𝜙) would be non-empty. As the difference of
two languages recognized by Büchi automata can again be
recognized by a Büchi automaton, and any Büchi automaton
that recognizes a nonempty language accepts at least one
ultimately periodic trace, we conclude that there exists an
ultimately periodic trace in ℒ(𝐴) that does not satisfy 𝜙.
This is however a contraction. Hence, our assumption was
incorrect and indeed we have 𝜋′ |= 𝜙 for all 𝜋′ ∈ ℒ(𝐴).
We conclude that 𝜙 ∈ 𝒮(𝐴).

We have shown both inclusions, so the equality holds.

Theorem 22. The support of a Büchi automaton is a theory.

Proof. This is a direct consequence of Lemma 21, as the
intersection of (complete consistent) theories is a theory.

Lemma C.6. Let 𝐴 be a Büchi automaton, and 𝜙 and LTL
formula. Then it holds that 𝒮(𝐴) + 𝜙 = 𝒮(𝐴 ⊓𝐴𝜙).

Proof. Let 𝜓 ∈ 𝒮(𝐴) + 𝜙 = Cn(𝒮(𝐴) ∪ {𝜙}). By
Lemma 21, it suffices to show that each ultimately peri-
odic trace 𝜋 ∈ ℒ(𝐴 ⊓𝐴𝜙) satisfies 𝜓. To see this, consider
a Kripke structure 𝑀𝜋 with Traces(𝑀𝜋) = {𝜋}. Clearly,
𝜋 |= 𝒮(𝐴)∪ {𝜙}, and so 𝑀𝜋 |= 𝒮(𝐴)∪ {𝜙}. This implies
that 𝑀𝜋 |= 𝜓, and hence 𝜋 |= 𝜓. As this holds for all
ultimately periodic traces 𝜋 ∈ ℒ(𝐴 ⊓ 𝐴𝜙), we conclude
that 𝜓 ∈ 𝒮(𝐴 ⊓𝐴𝜙).

For the converse inclusion, let 𝜓 ∈ 𝒮(𝐴⊓𝐴𝜙). We have
to show that any Kripke structure 𝑀 with 𝑀 |= 𝒮(𝐴) ∪
{𝜙} also satisfies 𝜓. Suppose this was not the case, i.e., that
𝑀 ̸|= 𝜓. Then there exists an ultimately periodic trace 𝜋 ∈
ℒ(𝐴𝑀 ) ∖ ℒ(𝐴𝜓). As 𝜋 /∈ ℒ(𝐴), we have that every trace
in ℒ(𝐴) satisfies ¬id(𝜋), and hence (¬id(𝜋)) ∈ 𝒮(𝐴).
But this contradicts the fact that 𝑀 |= 𝒮(𝐴). Hence the
supposition was wrong, and we have indeed that 𝑀 |= 𝜓.

We have shown both inclusions, so the equality holds.

D. Proofs for Section 6
(AGM Accommodation)
Proposition D.1. An excerpt is open-minded if it contains
any of the following:

• the inconsistent theory,
• all theories with finite bases, or
• all theories induced by a finite set of models.

Proof. The inconsistent theory contains all formulae; and
in particular it contains both 𝜙 and ¬𝜙 for every formula
𝜙.

An excerpt that contains all theories with finite bases in
particular contains both the theory Cn(𝜙) and the theory
Cn(¬𝜙).

In a compendious logic, there must be some (in fact, in-
finitely many) formulae that are neither tautological nor
inconsistent; otherwise the logic would be finitary. Let
us pick one such 𝜙. Then because 𝜙 is consistent, there
exists a model 𝑀 such that 𝑀 |= 𝜙, and the theory
𝒦 = {𝜓 | 𝑀 |= 𝜓} is in the excerpt (because it corre-
sponds to the singleton set of models {𝑀}). Because 𝜙
is not tautological, there also exists a model 𝑀 ′ such that
𝑀 ′ |= ¬𝜙, and by similar reasoning, ¬𝜙 thus also appears
in the excerpt.

Theorem 26 (Impossibility of Closedness). If E is an open-
minded, finitely representable excerpt of a compendious logic,
then E is not closed under rational contraction.

Proof. Let E be an open-minded excerpt. By definition,
there is a formula 𝜙 and theories 𝒦,𝒦′ ∈ E such that
𝜙 ∈ 𝒦 and ¬𝜙 ∈ 𝒦′. As compendious logics are non-
finitary and closed under classical negation, there are in-
finitely many CCTs (because otherwise they would only
have finitely many theories, but either there are infinitely
many uncomparable formulae: in which case their closures
form infinitely many uncomparable theories: of there is an
infinite chain of implications betwen the formulae: and thus
their closures also form an infinite chain of distinct theories).
Since every CCT is either a complement of 𝜙 or of ¬𝜙, we
have that either 𝜔(𝜙) or 𝜔(¬𝜙) presents infinitely many
CCTs. Without loss of generality, let 𝜔(𝜙) have infinitely
many CCTs.

Let Γ be a set of choice functions such that, 𝛿 ∈ Γ iff for
all formulae 𝜓:



1. 𝛿(𝜓) ∈ (𝒫(𝜔(𝜓)) ∖ {∅}), if 𝜙 ≡ 𝜓;
2. 𝛿(𝜓) = CCT, if 𝜓 ≡ ⊤;
3. 𝛿(𝜓) = 𝜔(𝜓), otherwise.

Intuitively, each choice function 𝛿 ∈ Γ behaves by pick-
ing all complements of a formula 𝜓 to be contracted, as long
as 𝜓 is not equivalent to 𝜙 (condition 3). As tautologies
have no complements, 𝛿 chooses all CCTs (condition 2). In
the case that 𝜓 ≡ 𝜙, then 𝛿 choses some complements of
𝜙. All choice functions in Γ differ only at this condition. In
fact, each subset of the complements of 𝜙 gives a different
choice function in Γ. Therefore, Γ has the same cardinality
as 𝒫(𝜔(𝜙)). Thus, as 𝜙 has infinitely many complements,
we get that 𝒫(𝜔(𝜙)) is uncountable. This means that Γ is
also uncountable.

Due to (Discerning), we have that each choice func-
tion in Γ yields a different contraction for 𝜙, which means
that there are uncountably many rational outcomes to con-
tract 𝜙 from 𝒦. However, E is countable, as it is finitely
representable. Therefore, E is not closed under rational
contraction.

Proposition 27. An excerpt is closed under fully rational
contraction iff it is closed under rational contraction.

Proof. One direction is trivial: Any fully rational contrac-
tion is a rational contraction, thus an excerpt closed under
rational contraction is also closed under fully rational con-
traction.

For the other direction: Let an excerpt be closed under
fully rational contraction, let 𝒦 be a theory of the excerpt,
and let 𝜙 be a formula. Let .− be any rational contraction,
and 𝒦′ = 𝒦 .− 𝜙. We have to show that 𝒦′ is in the excerpt.
We distinguish two cases:

Case 1: 𝜙 /∈ 𝒦. Then 𝒦′ = 𝒦 is in the excerpt, by assump-
tion.

Case 2: 𝜙 ∈ 𝒦. Then 𝒦′ = 𝒦 ∩
⋂︀
𝛿(𝜙), where 𝛿 is the

choice function underlying .−.

Let < be the preference relation such that 𝑆1 < 𝑆2

iff 𝑆1 /∈ 𝛿(𝜙) and 𝑆2 ∈ 𝛿(𝜙). This relation trivially
satisfies mirroring and maximal cut. For the choice
function 𝛿<, it holds that 𝛿<(𝜙) = 𝛿(𝜙), and hence
the fully rational contraction assigns 𝒦 .−< 𝜙 = 𝒦′.
By assumption of closedness under fully rational
contraction, we now have that 𝒦′ is in the excerpt.

Definition D.2. A theory is 𝒦 is supreme iff 𝒦 is not
tautological and for all 𝛼 ∈ 𝒦, either Cn(𝛼) = 𝒦 or
Cn(𝛼) = Cn(∅).

Observe that by definition, supreme theories always have
a finite base.

Let 𝑟 be a function that ranks each CCT to a negative
integer, such that distinct CCTs are ranked to different neg-
ative integers. Let <𝑟 be the induced relation from 𝑟 that
is 𝑋 <𝑟 𝑌 iff 𝑟(𝑋) < (𝑌 ). Note that <𝑟 is a strict total
order. Also note that it satisfies (Maximal Cut) and due to
totality it satisfies (Mirroring).

Given a theory 𝒦, we define

𝒦 ∘ 𝜙 =

{︃
𝒦 ∩

⋂︀
min<𝑟 (𝜔(𝜙)) if 𝜙 ̸≡ ⊤ and 𝜙 ∈ 𝒦

𝒦 otherwise

Observation D.3. 𝒦 ∘ 𝜙 is fully AGM rational.

Proof. Observe that by definition, ∘ is a blade contraction
function and therefore it is fully AGM rational.

It remains to show that ∘ remains within the excerpt.

Proposition D.4. If E accommodates contraction and 𝒦 ∈
E, then for all formula 𝜙, 𝒦 ∘ 𝜙 ∈ E

Proof. If 𝜙 ∈ Cn(∅) or 𝜙 ̸∈ 𝒦, then by definition 𝒦 ∘
𝜙 = 𝒦, and by hypothesis, 𝒦 is within the excerpt. The
proof proceeds for the case that 𝜙 ̸≡ ⊤ and 𝜙 ∈ 𝒦. Let
𝒦′ = 𝒦 ∘ 𝜙. Thus, from the definition of ∘, we have 𝒦′ =
𝒦∩

⋂︀
min<𝒦(𝜔(𝜙)). As<𝑟 is strictly total, min<𝑟 (𝜔(𝜙))

is a singleton set {𝑀}, which implies that 𝒦′ = 𝒦 ∩𝑀 .
Let 𝑋 = CCT ∖ {𝑀}. Thus,

⋂︀
𝑋 is a supreme the-

ory, which means that there is some formula 𝛼 such that⋂︀
𝑋 = 𝐶𝑛(𝛼). Therefore, as 𝑀 is the only counter CCT

of 𝛼, we get that the only solution to contract 𝛼 is 𝒦 ∩𝑀 .
By hypothesis, the excerpt E accommodates contraction.
Thus, there is some contraction operator .− on 𝒦 such that
img(

.−) ⊆ E. Therefore, 𝒦 .− 𝛼 = 𝒦 ∩ 𝑀 . Thus, as
by hypothesis .− remains within the excerpt, we have that
𝒦 .− 𝛼 ∈ E which implies that 𝒦′ ∈ E. Therefore, as
𝒦′ = 𝒦 ∘ 𝜙, we have that 𝒦 ∘ 𝜙 ∈ E.

Proposition 29. An excerpt E accommodates rational con-
traction iff E accommodates fully rational contraction.

Proof. The fact that accommodation of fully rational con-
traction implies accommodation of rational contraction is
straightforward. The opposite direction follows from Ob-
servation D.3 and Proposition D.4.

E. Proofs for Section 7
(Uncomputability of Contraction)
Let us see an example of finitary theories in LTL.

Example E.1. For an ultimately periodic trace 𝜋 ∈ UP ,
consider the theory Cn(¬id(𝜋)). This theory contains only 2
equivalence classes, namely the equivalence class of ¬id(𝜋)
and the tautologies. Specifically, consider some 𝜙 with
¬id(𝜋) |= 𝜙. This means that for all 𝜋′ ∈ UP ∖ {𝜋},
we have that 𝜋′ |= 𝜙. Now either 𝜋 |= 𝜙, and hence 𝜙 is a
tautology; or 𝜋 ̸|= 𝜙, so

{𝜋′ ∈ UP | 𝜋′ |= 𝜙} ⊆ UP∖{𝜋} = {𝜋′ ∈ UP | 𝜋′ |= ¬id(𝜋)}

which means 𝜙 |= ¬id(𝜋), and hence (with the assumption
above) 𝜙 ≡ ¬id(𝜋).

The formulae ¬id(𝜋) are the weakest non-tautological
formulae of LTL; their negation id(𝜋) are the bases of CCTs
(i.e., they are the strongest consistent formulae of LTL). In
general, a finitary belief state must be very weak; it can
only imply finitely many formulae. Note that the implied
formulae can be weakened further by disjoining them with
arbitrary other formulae; and still such weakening only re-
sults in finitely many different beliefs. In other words: A
finitary theory is only finitely many beliefs away from the
tautological theory; and those finitely many beliefs must
be very weak, or they would imply infinitely many conse-
quences.



E.1. Existence of Infinite Cleavings
We prove that every non-finitary theory must contain an
infinite cleaving.

Definition E.2. The decomposition of a theory in terms of
CCTs is given by the function

decomp(𝒦) = {𝑋 ∈ CCT | 𝒦 ⊆ 𝑋}.

Lemma E.3. A theory is non-finitary iff CCT ∖decomp(𝒦)
is infinite.

Proof. We show the two implications separately.

“⇒”: Contrapositively, assume that CCT ∖ decomp(𝒦)
is finite, in particular let CCT ∖ decomp(𝒦) =
{𝐶1, . . . , 𝐶𝑛}. We know that in a logic with the
above assumptions, every CCT has a finite base. In
particular, let 𝐶𝑖 = Cn(𝜙𝑖) for 𝑖 = 1, . . . , 𝑛. Then
every formula in 𝒦 is equivalent to

⋀︀
𝐶𝑖∈𝑋 ¬𝜙𝑖 for

some 𝑋 ⊆ {𝐶1, . . . , 𝐶𝑛}.

To see this, take some 𝛼 ∈ 𝒦. Let 𝑋 = {𝐶𝑖 | 𝛼 /∈
𝐶𝑖}. Then 𝜙𝑖 |= ¬𝛼 for every 𝐶𝑖 ∈ 𝑋 , therefore
𝛼 |= ¬𝜙𝑖, and thus 𝛼 |=

⋀︀
𝐶𝑖∈𝑋 ¬𝜙𝑖. For the

reverse entailment, note that every CCT not in 𝑋
is either one of the remaining 𝐶𝑖 or in decomp(𝒦),
and thus every such CCT contains 𝛼. Therefore, any
CCT containing the formula

⋀︀
𝐶𝑖∈𝑋 ¬𝜙𝑖 must also

contain 𝛼. In other words,
⋀︀
𝐶𝑖∈𝑋 ¬𝜙𝑖 |= 𝛼.

Since every equivalence class of formulae in 𝒦 cor-
responds to one of the 2𝑛 possible choices of 𝑋 , we
conclude that 𝒦 is finitary.

“⇐”: Suppose CCT∖decomp(𝒦) is infinite, and let CCT∖
decomp(𝒦) = {𝐶1, 𝐶2, . . .} be a duplicate-free
enumeration of the set. For every 𝐶𝑖, we know
that there exists a finite base 𝜙𝑖. Consequently, the
infinitely many formulae ¬𝜙𝑖 are all in 𝒦. These
formulae are pairwise non-equivalent (otherwise we
would have 𝐶𝑖 = 𝐶𝑗 ). Thus we conclude that 𝒦 is
non-finitary.

Lemma 35. Every non-finitary theory contains a cleaving.

Proof. Let 𝒦 be a non-finitary theory. By the above lemma,
we know that CCT ∖ decomp(𝒦) is infinite. Let CCT ∖
decomp(𝒦) = {𝐶1, 𝐶2, . . .} be a duplicate-free enumera-
tion of the set, and let𝐶𝑖 = Cn(𝜙𝑖) for each 𝑖. We consider
the set of formulae {¬𝜙𝑖 | 𝐶𝑖 ∈ CCT∖decomp(𝒦) }. This
set is infinite, and the formulae are pairwise non-equivalent.
For every pair𝐶𝑖, 𝐶𝑗 with 𝑖 ̸= 𝑗, the formula (¬𝜙𝑖)∨(¬𝜙𝑗)
is a tautology.

Lemma 38. The composition 𝛿𝜋 of a choice function 𝛿 and
a permutation 𝜋 : N → 𝒞 of a cleaving 𝒞 ⊆ 𝒦 is a choice
function.

Proof. We show that 𝛿𝜋 satisfies all three conditions of
choice functions, for all formulae 𝜙,𝜓:

To show: 𝛿𝜋(𝜙) ̸= ∅. Since 𝛿𝜋(𝜙) = 𝛿(𝜙 ∨ min𝜋(𝜙)),
and by assumption that 𝛿 is a choice function, we
have 𝛿(𝜙 ∨min𝜋(𝜙)) ̸= ∅, the result follows.

To show: If 𝜙 /∈ Cn(∅), then 𝛿𝜋(𝜙) ⊆ 𝜔(𝜙). Suppose
that 𝜙 /∈ Cn(∅). We have either min𝜋(𝜙) = 𝜋(𝑖)
for some 𝑖, or min𝜋(𝜙) = ⊥. In the latter case,
𝜙∨min𝜋(𝜙) ≡ 𝜙, and thus by assumption that 𝛿 is
a choice function, 𝛿(𝜙∨min𝜋(𝜙)) = 𝛿(𝜙) ⊆ 𝜔(𝜙).

Let us thus now assume that min𝜋(𝜙) = 𝜋(𝑖) for
some 𝑖. Then 𝜔(𝜙 ∨ 𝜋(𝑖)) = 𝜔(𝜙) ∩ 𝜔(𝜋(𝑖)) ̸= ∅,
so 𝜙 ∨ 𝜋(𝑖) is not a tautology. Since 𝛿 is a choice
function, we conclude that 𝛿𝜋(𝜙) = 𝛿(𝜙 ∨ 𝜋(𝑖)) ⊆
𝜔(𝜙 ∨ 𝜋(𝑖)) ⊆ 𝜔(𝜙).

To show: If 𝜙 ≡ 𝜓, then 𝛿𝜋(𝜙) = 𝛿𝜋(𝜓). Suppose 𝜙 ≡
𝜓, then we have 𝜔(𝜙) = 𝜔(𝜓), and thus
min𝜋(𝜙) = min𝜋(𝜓). It follows that 𝜙 ∨
min𝜋(𝜙) ≡ 𝜓 ∨min𝜋(𝜓). Since 𝛿 is a choice func-
tion, we conclude that 𝛿𝜋(𝜙) = 𝛿(𝜙∨min𝜋(𝜙)) =
𝛿(𝜓 ∨min𝜋(𝜓)) = 𝛿𝜋(𝜓).

Thus we have shown that 𝛿𝜋 is a choice function.

E.2. Uncomputability
We prove the main result of this section: A non-finitary the-
ory that admits any contraction must admit uncomputable
contractions.

Observation E.4. It is easy to see that img(𝛿𝜋) ⊆ img(𝛿).

Lemma E.5. Let 𝜋, 𝜋′ : N → 𝒞 be two distinct permutations
of 𝒞. Then there exists a formula 𝛼 ∈ 𝒦 such that 𝛿𝜋(𝛼) ̸=
𝛿𝜋′(𝛼).

Proof. Since 𝜋 and 𝜋′ are different permutations, there must
exist some indices 𝑖, 𝑗, 𝑖′, 𝑗′ ∈ N with 𝑖 < 𝑗 and 𝑖′ < 𝑗′

such that 𝜋′(𝑖′) = 𝜋(𝑗) and 𝜋′(𝑗′) = 𝜋(𝑖).
Consider now the formula 𝛼 := 𝜋(𝑖) ∧ 𝜋(𝑗). Since

𝜋(𝑖), 𝜋(𝑗) are in 𝒦, we clearly have 𝛼 ∈ 𝒦.
As the next step, we show that min𝜋(𝛼) = 𝜋(𝑖):

• Note that 𝜔(𝛼) = 𝜔(𝜋(𝑖)) ∪ 𝜔(𝜋(𝑗)).
• Since 𝒞 does not contain a tautology, 𝜔(𝜋(𝑖)) is non-

empty, and hence 𝜔(𝛼) ∩ 𝜔(𝜋(𝑖)) ̸= ∅.
• Furthermore, the complements of 𝜋(𝑖) and any 𝜋(𝑘)

with 𝑘 ̸= 𝑖 are disjoint (by property (CL2) of cleav-
ings), and the same holds for 𝜋(𝑗).

• Hence, the only 𝑘 such that 𝜔(𝛼) ∩ 𝜔(𝑘) ̸= ∅ are
𝑘 = 𝑖 and 𝑘 = 𝑗.

• Finally, recall that 𝑖 < 𝑗.

It follows that min𝜋(𝛼) = 𝜋(𝑖). Consequently, 𝛼 ∨
min𝜋(𝛼) ≡ (𝜋(𝑖) ∧ 𝜋(𝑗)) ∨ 𝜋(𝑖) ≡ 𝜋(𝑖), and thus it
follows that 𝛿𝜋(𝛼) = 𝛿(𝜋(𝑖)) ⊆ 𝜔(𝜋(𝑖)). Noting that
𝛼 = 𝜋′(𝑗′) ∧ 𝜋′(𝑖′), and applying analogous reasoning, we
have that 𝛿𝜋′(𝛼) ⊆ 𝜔(𝜋′(𝑖′)) = 𝜔(𝜋(𝑗)).

Thus we have shown that 𝛿𝜋(𝛼) ⊆ 𝜔(𝜋(𝑖)) and
𝛿𝜋′(𝛼) ⊆ 𝜔(𝜋(𝑗)). With the disjointness of complements
in a cleaving (CL2), it follows that 𝛿𝜋(𝛼) ∩ 𝛿𝜋′(𝛼) = ∅.
But since 𝛿𝜋, 𝛿𝜋′ are choice functions, and thus 𝛿𝜋(𝛼)
and 𝛿𝜋′(𝛼) cannot be empty, we conclude that 𝛿𝜋(𝛼) ̸=
𝛿𝜋′(𝛼).

Lemma E.6. Let 𝜋, 𝜋′ : N → 𝒞 be two distinct permutations
of 𝒞. Then the induced contractions differ, i.e., it holds that.−𝛿𝜋 ̸= .−𝛿𝜋′ .



Proof. By Lemma E.5, there exists a formula 𝛼 such that
𝛿𝜋(𝛼) ̸= 𝛿𝜋′(𝛼). Consider now the following sets of
CCTs: decomp(𝒦)∪𝛿𝜋(𝛼) and decomp(𝒦)∪𝛿𝜋′(𝛼). Since
decomp(𝒦) contains only CCTs that contain 𝛼, whereas
𝛿𝜋(𝛼) and 𝛿𝜋′(𝛼) contain only CCTs that do not contain
𝛼, each of the two unions has no overlap. Therefore, we
conclude that decomp(𝒦)∪𝛿𝜋(𝛼) ̸= decomp(𝒦)∪𝛿𝜋′(𝛼).
With (Compendious), it follows that

𝒦 .−𝛿𝜋𝛼 = 𝒦 ∩ 𝛿𝜋(𝛼) =
⋂︁

(decomp(𝒦) ∪ 𝛿𝜋(𝛼))⋂︁
(decomp(𝒦) ∪ 𝛿𝜋(𝛼)) ̸=

⋂︁
(decomp(𝒦) ∪ 𝛿𝜋′(𝛼))⋂︁

(decomp(𝒦) ∪ 𝛿𝜋′(𝛼)) = 𝒦 ∩ 𝛿𝜋′(𝛼) = 𝒦 .−𝛿𝜋′𝛼

Since .−𝛿𝜋 and .−𝛿𝜋′ differ on 𝛼, they must be different
contractions.

Lemma E.7. Let .− be a rational contraction on a non-
finitary theory 𝒦, such that .− remains in the excerpt E. Then
there exist uncountably many rational contractions on 𝒦 that
remain in E.

Proof. We have shown that 𝒦 contains an infinite cleaving
(Lemma 35). By Lemmas 38 and E.6, each permutation of
this infinite cleaving induces a distinct rational contraction;
and by Observation E.4, each of these contractions remains
in E. Since there are uncountably many permutations of an
infinite set, the result follows.

Lemma E.8. [18] An ECF is fully rational iff its choice func-
tion satisfies both conditions:

(C1) 𝛿(𝜙 ∧ 𝜓) ⊆ 𝛿(𝜙) ∪ 𝛿(𝜓), for all formulae 𝜙 and 𝜓;

(C2) For all formulae 𝜙 and 𝜓, if 𝜔(𝜙)∩𝛿(𝜙∧𝜓) ̸= ∅ then
𝛿(𝜙) ⊆ 𝛿(𝜙 ∧ 𝜓)

Lemma E.9. For every permutation 𝜋, if 𝛿 satisfies (C1),
then so does 𝛿𝜋 .

Proof. Let 𝜙 and 𝜓 be two formulae. We distinguish three
cases:

Case 1: min𝜋(𝜙) = min𝜋(𝜓) = ⊥. In this case, 𝜔(𝜙)
and 𝜔(𝜓) must both be disjoint from 𝜔(𝜋(𝑘)) for
all 𝑘. It follows that the same holds for 𝜔(𝜙 ∧ 𝜓) =
𝜔(𝜙) ∪ 𝜔(𝜓), and hence also min𝜋(𝜙 ∧ 𝜓) = ⊥.
We conclude:

𝛿𝜋(𝜙∧𝜓) = 𝛿(𝜙∧𝜓) ⊆ 𝛿(𝜙)∪𝛿(𝜓) = 𝛿𝜋(𝜙)∪𝛿𝜋(𝜓)

Case 2: min𝜋(𝜙) = 𝜋(𝑖),min𝜋(𝜓) = 𝜋(𝑗) for some 𝑖, 𝑗.
In this case, let us assume wlog. that 𝑖 ≤ 𝑗. It
follows that both 𝜔(𝜙) and 𝜔(𝜓) are disjoint
from 𝜔(𝜋(𝑘)) for all 𝑘 < 𝑖. Consequently,
𝜔(𝜙 ∧ 𝜓) = 𝜔(𝜙) ∪ 𝜔(𝜓) is also disjoint from
𝜔(𝜋(𝑘)) for all 𝑘 < 𝑖; but is not disjoint from
𝜔(𝜋(𝑖)). Hence, we have min𝜋(𝜙 ∧ 𝜓) = 𝜋(𝑖).

It holds that (𝜙∧𝜓)∨𝜋(𝑖) ≡ (𝜙∨𝜋(𝑖))∧(𝜓∨𝜋(𝑖)),
and hence we conclude that

𝛿𝜋(𝜙∧𝜓) = 𝛿((𝜙∧𝜓)∨𝜋(𝑖)) = 𝛿((𝜙∨𝜋(𝑖))∧(𝜓∨𝜋(𝑖)))

If we now have 𝑖 = 𝑗, then it follows (as 𝛿 satisfies
(C1)) that

𝛿𝜋(𝜙∧𝜓) = 𝛿(𝜙∨𝜋(𝑖))∪𝛿(𝜓∨𝜋(𝑖)) = 𝛿𝜋(𝜙)∪𝛿𝜋(𝜓)

and we are done. If 𝑖 < 𝑗, then we must have𝜔(𝜓)∩
𝜔(𝜋(𝑖)) = ∅, and 𝜓 ∨ 𝜋(𝑖) is a tautology. Hence,

𝛿𝜋(𝜙∧𝜓) = 𝛿(𝜙∨𝜋(𝑖)) = 𝛿𝜋(𝜙) ⊆ 𝛿𝜋(𝜙)∪𝛿𝜋(𝜓)

Case 3: {min𝜋(𝜙),min𝜋(𝜓)} = {𝜋(𝑖),⊥} for some 𝑖.
In this case, let us assume wlog. that min𝜋(𝜙) = ⊥
and min𝜋(𝜓) = 𝜋(𝑖). Then 𝜔(𝜙) is disjoint from
𝜔(𝜋(𝑘)) for all 𝑘. Since 𝜔(𝜙 ∧ 𝜓) = 𝜔(𝜙) ∪ 𝜔(𝜓),
it follows that min𝜋(𝜙 ∧ 𝜓) = 𝜋(𝑖).

We know 𝜔(𝜙) is disjoint from 𝜔(𝜋(𝑖)), and thus
𝜙 ∨ 𝜋(𝑖) is a tautology. It follows that (𝜙 ∧ 𝜓) ∨
𝜋(𝑖) ≡ 𝜓 ∨ 𝜋(𝑖). Hence,

𝛿𝜋(𝜙∧𝜓) = 𝛿(𝜓∨𝜋(𝑖)) = 𝛿𝜋(𝜓) ⊆ 𝛿𝜋(𝜙)∪𝛿𝜋(𝜓)

Thus we have shown that 𝛿𝜋 indeed satisfies (C1).

Lemma E.10. For every permutation 𝜋, if 𝛿 satisfies (C2),
then so does 𝛿𝜋 .

Proof. Let 𝜙 and 𝜓 be formulae, and assume that 𝜔(𝜙) ∩
𝛿𝜋(𝜙 ∧ 𝜓) ̸= ∅. We distinguish four cases:

Case 1 : min𝜋(𝜙) = min𝜋(𝜓) = ⊥. In this case, 𝜔(𝜙)
and 𝜔(𝜓) must both be disjoint from 𝜔(𝜋(𝑘)) for
all 𝑘. It follows that the same holds for 𝜔(𝜙 ∧ 𝜓) =
𝜔(𝜙) ∪ 𝜔(𝜓), and hence also min𝜋(𝜙 ∧ 𝜓) = ⊥.
Then 𝛿𝜋(𝜙) = 𝛿(𝜙), 𝛿𝜋(𝜓) = 𝛿(𝜋) and 𝛿𝜋(𝜙 ∧
𝜓) = 𝛿(𝜙 ∧ 𝜓). Since 𝛿 satisfies (C2), the result
follows.

Case 2 : min𝜋(𝜙) = 𝜋(𝑖), and either min𝜋(𝜓) = ⊥ or
min𝜋(𝜓) = 𝜋(𝑗) for some 𝑗 ≥ 𝑖. In this case, we
observe that min𝜋(𝜙 ∧ 𝜓) = 𝜋(𝑖).

Since 𝜙 and 𝜋(𝑖) have shared complements, (𝜙 ∧
𝜓)∨𝜋(𝑖) cannot be a tautology. Then, by hypothesis
and the fact that 𝛿 is a choice function, we have

∅ ̸= 𝜔(𝜙) ∩ 𝛿𝜋(𝜙 ∧ 𝜓) = 𝜔(𝜙) ∩ 𝛿((𝜙 ∧ 𝜓) ∨ 𝜋(𝑖))
⊆ 𝜔(𝜙) ∩ 𝜔((𝜙 ∧ 𝜓) ∨ 𝜋(𝑖))
⊆ 𝜔(𝜙 ∨ 𝜋(𝑖))

Then we have

𝛿((𝜙 ∨ 𝜋(𝑖)) ∧ (𝜓 ∨ 𝜋(𝑖))) ∩ 𝜔(𝜙 ∨ 𝜋(𝑖))
= 𝛿((𝜙 ∧ 𝜓) ∨ 𝜋(𝑖)) ∩ 𝜔(𝜙 ∨ 𝜋(𝑖)) ̸= ∅.

and by (C2) for 𝛿, we conclude that

𝛿𝜋(𝜙) = 𝛿(𝜙∨𝜋(𝑖)) ⊆ 𝛿((𝜙∨𝜋(𝑖))∧(𝜓∨𝜋(𝑖))) = 𝛿𝜋(𝜙∧𝜓)

Case 3 : min𝜋(𝜓) = 𝜋(𝑗) for some 𝑗, and either
min𝜋(𝜙) = 𝜋(𝑖) for 𝑖 > 𝑗 or min𝜋(𝜙) = ⊥. In
this case, we observe that min𝜋(𝜙 ∧ 𝜓) = 𝜋(𝑗).
Furthermore, it must hold that 𝜔(𝜙)∩𝜔(𝜋(𝑗)) = ∅.

Since 𝜓 and 𝜋(𝑗) have shared complements, (𝜙 ∧
𝜓)∨𝜋(𝑗) cannot be a tautology. Then, by hypothesis
and the fact that 𝛿 is a choice function, we have

∅ ̸= 𝜔(𝜙) ∩ 𝛿𝜋(𝜙 ∧ 𝜓) = 𝜔(𝜙) ∩ 𝛿((𝜙 ∧ 𝜓) ∨ 𝜋(𝑗))
⊆ 𝜔(𝜙) ∩ 𝜔((𝜙 ∧ 𝜓) ∨ 𝜋(𝑗))
⊆ 𝜔(𝜙) ∩ 𝜔(𝜋(𝑗))

This means that 𝜔(𝜙) ∩ 𝜔(𝜋(𝑗)) ̸= ∅, and we have
a contradiction.

Thus we have shown that 𝛿𝜋 indeed satisfies (C2).̧



Lemma E.11. Let .− be a fully rational contraction on a
non-finitary theory 𝒦, such that .− remains in the excerpt E.
Then there exist uncountably many fully rational contractions
on 𝒦 that remain in E.

Proof. The proof proceeds analogously to the proof of
Lemma E.7.

We have shown that 𝒦 contains an infinite cleaving
(Lemma 35). Each permutation of this infinite cleaving in-
duces a distinct (Lemma E.6) fully (Lemmas E.9 and E.10)
rational (Lemma 38) contraction. By Observation E.4, each
of these contractions remains in E. Since there are uncount-
ably many permutations of an infinite set, the result fol-
lows.

Theorem 39. Let E accommodate rational contraction, and
let 𝒦 ∈ E. The following statements are equivalent:

1. The theory 𝒦 is non-finitary.
2. There exists an uncomputable rational contraction

function on 𝒦 that remains in E.
3. There exists an uncomputable fully rational contrac-

tion function on 𝒦 that remains in E.

Proof. We assume we can decide equivalence of formulae
in the logic.

• (1) to (2): follows from Lemma E.7.
• (2) to (3): follows from Proposition 29

and Lemma E.11.
• (3) to (2) and (3) to (1): We show these by contraposi-

tion. Fix a theory 𝒦 with finitely many equivalence
classes, with representatives 𝛼1, . . . , 𝛼𝑛. Then one
can define a large class of (possibly non-rational)
contractions as follows: given 𝜙, decide if 𝜙 is equiv-
alent to any non-tautological 𝛼𝑖; if not, return some
code word𝑤 with 𝑓(𝑤) = 𝒦; otherwise select some
subset 𝑋 of {𝛼1, . . . , 𝛼𝑛} such that Cn(𝑋) is in E,
and return a code word 𝑤 with 𝑓(𝑤) = Cn(𝑋).
The returned code word 𝑤 depends only on the rep-
resentative 𝛼𝑖 equivalent to 𝜙, not on the syntax of
𝜙. All of these functions are computable, and they
include all (fully) rational contractions, so all (fully)
rational contractions are computable.

F. Proofs for Section 8
(Effective Contraction in the Büchi

Excerpt)
In Section 8, we define a new selection mechanism for con-
tractions that remain in the Büchi excerpt:

Definition 40 (Büchi Choice Functions). A Büchi choice
function 𝛾 maps each LTL formula to a single Büchi automa-
ton, such that for all LTL formulae 𝜙 and 𝜓,

(BF1) the language accepted by 𝛾(𝜙) is non-empty;

(BF2) 𝛾(𝜙) supports ¬𝜙, if 𝜙 is not a tautology; and

(BF3) 𝛾(𝜙) and 𝛾(𝜓) accept the same language, if 𝜙 ≡ 𝜓.

In order to show that this selection mechanism gives
rise to rational contractions, we connect it to the choice
functions (Definition 9) underlying exhaustive contraction
functions (Definition 10). Recall from Lemma 20 that a
certain kind of traces, the ultimately periodic traces (𝜋 ∈
UP ), correspond to complete consistent theories ThUP (𝜋)
of LTL. A Büchi choice function 𝛾 thus induces a choice
function that selects all CCTs corresponding to ultimately
periodic traces in the chosen Büchi automaton’s accepted
language:

Definition F.1. The choice function 𝛿𝛾 induced by a Büchi
choice function 𝛾 is the function

𝛿𝛾(𝜙) = {ThUP (𝜋) | 𝜋 ∈ UP ∩ ℒ(𝛾(𝜙)) }

Lemma F.2. If 𝛾 is a Büchi choice function, then 𝛿𝛾 is a
choice function, i.e., satisfies (CF1) - (CF3).

Proof. Let 𝛾 be a Büchi choice function, which by defini-
tion satisfies (BF1) - (BF3). We show each of the required
properties for 𝛿𝛾 .

(CF1): By (BF1), the language of 𝛾(𝜙) is non-empty. Per
a classical result, any Büchi automaton 𝛾(𝜙) that
recognizes a non-empty language must accept at
least one ultimately periodic trace 𝜋. Hence, we
have ThUP (𝜋) ∈ 𝛿𝛾(𝜙), and 𝛿𝛾(𝜙) is non-empty.

(CF2): Let 𝜙 be non-tautological, i.e., 𝜙 /∈ Cn(∅). By
(BF2), it follows that 𝛾(𝜙) supports ¬𝜙. This means
that every trace 𝜋 ∈ ℒ(𝛾(𝜙)) satisfies ¬𝜙. In
particular, this holds for every ultimately periodic
𝜋 ∈ ℒ(𝛾(𝜙)). For such a 𝜋, it then follows that
(¬𝜙) ∈ ThUP (𝜋), or equivalently, 𝜙 /∈ ThUP (𝜋),
and ThUP (𝜋) ∈ 𝜔(𝜙). We have thus shown that
𝛿𝛾(𝜙) ⊆ 𝜔(𝜙) holds.

(CF3): Let 𝜙 ≡ 𝜓. By (BF3), it follows that ℒ(𝛾(𝜙)) =
ℒ(𝛾(𝜓)) holds. It is then easy to see, from the defi-
nition of 𝛿𝛾 , that also 𝛿𝛾(𝜙) = 𝛿𝛾(𝜓) holds.

We conclude that 𝛿𝛾 is indeed a choice function.

Corollary F.3. The Büchi contraction function induced by
𝛾 is an exhaustive contraction function, with the underlying
choice function 𝛿𝛾 .

Proof. This follows directly from Lemma F.2, and rewriting
𝒮(𝛾(𝜙)) as

⋂︀
𝛿𝛾(𝜙), using Lemma 21.

To see that Büchi contraction functions remain in the
Büchi excerpt, we show the following general property for
the support of Büchi automata.

Lemma F.4. Let 𝐴1, 𝐴2 be Büchi automata. Then it holds
that 𝒮(𝐴1) ∩ 𝒮(𝐴2) = 𝒮(𝐴1 ⊔𝐴2).

Proof. Let 𝜙 ∈ 𝒮(𝐴1) ∩ 𝒮(𝐴2). By definition of support,
this means that 𝜋1 |= 𝜙 for each 𝜋1 ∈ ℒ(𝐴1), and 𝜋2 |= 𝜙
for each 𝜋2 ∈ ℒ(𝐴2). It is easy to see that this is equivalent
to the statement that 𝜋 |= 𝜙 for each 𝜋 ∈ ℒ(𝐴1) ∪ ℒ(𝐴2).
As ℒ(𝐴1 ⊔ 𝐴2) = ℒ(𝐴1) ∪ ℒ(𝐴2), and by definition of
support, the latter statement is in turn equivalent to 𝜙 ∈
𝒮(𝐴1 ⊔𝐴2). We have thus shown the equality.



Corollary F.5. Let .−𝛾 be a Büchi contraction function on
a theory 𝒦 = 𝒮(𝐴), where 𝐴 is a Büchi automaton. The
contraction .−𝛾 satisfies 𝒦 .−𝛾 𝜙 = 𝒮(𝐴 ⊔ 𝛾(𝜙)) if 𝜙 ∈ 𝒦
and𝜙 is not a tautology, or 𝒦 .−𝛾𝜙 = 𝒮(𝐴) otherwise. Hence,.−𝛾 remains in the Büchi excerpt.

Proof. This follows directly from Definition 41 and
Lemma F.4.

We have thus shown that BCFs are rational and remain in
the Büchi excerpt. Let us now consider the opposite direc-
tion. We make use of the fact that every rational contraction
is an ECF induced by some choice function 𝛿.

Definition F.6. Let 𝒦 = 𝒮(𝐴), for a Büchi automaton 𝐴,
and let .−𝛿 be a rational contraction on 𝒦 that remains in the
Büchi excerpt, induced by a choice function 𝛿. We define the
Büchi choice function 𝛾𝛿 , such that for each formula 𝜙:

𝛾𝛿(𝜙) =

⎧⎪⎨⎪⎩
𝐴𝜙 if 𝜙 ∈ Cn(∅)
𝐴¬𝜙 if 𝜙 /∈ 𝒦
𝐴′ else, where 𝒮(𝐴′) =

⋂︀
𝛿(𝜙)

Lemma F.7. Let 𝒦 = 𝒮(𝐴), for a Büchi automaton 𝐴, and
let .−𝛿 be a rational contraction on 𝒦 that remains in the
Büchi excerpt, induced by a choice function 𝛿. The function
𝛾𝛿 is a well-defined Büchi choice function.

Proof. First, we show that an automaton 𝐴′ as in the def-
inition always exists. Let us thus assume that 𝜙 ∈ 𝒦 is
non-tautological. Since .− remains in the Büchi excerpt, we
know that 𝒦 .− 𝜙 = 𝒮(𝐴′′) for some Büchi automaton 𝐴′.
We define𝐴′ as a Büchi automaton that recognizes precisely
the language ℒ(𝐴′′)∖ℒ(𝐴). Such an automaton can always
be constructed from 𝐴 and 𝐴′′. It follows that 𝐴′ is unique,
up to language-equivalence of automata.

Clearly, we have ℒ(𝐴′′) = ℒ(𝐴)∪ℒ(𝐴′). By Lemma 21,
this implies 𝒮(𝐴) ∩ 𝒮(𝐴′) = 𝒮(𝐴′′) = 𝒦 .− 𝜙 = 𝒦 ∩⋂︀
𝛿(𝜙). Since the support depends only on the language of

an automaton, this implies 𝒦 .− 𝜙 = 𝒮(𝐴′′) = 𝒮(𝐴 ⊔𝐴′).
As 𝒮(𝐴) = 𝒦, and as the decomposition of 𝒦 is necessarily
disjoint from 𝛿(𝜙), it follows that 𝒮(𝐴′) =

⋂︀
𝛿(𝜙).

It remains to examine the conditions (BF1) - (BF3).

(BF1): In the first two cases, it is again easy to see that
𝛾𝛿(𝜙) accepts a non-empty language. In the third
case, since .− is rational, we have 𝛿(𝜙) ̸= ∅, and
consequently the language of𝐴′ must be non-empty.

(BF2): We assume 𝜙 is non-tautological, so the first case is
ruled out. In the second case, clearly 𝐴¬𝜙 supports
¬𝜙. In the third case, we know that 𝛿 satisfies (CF2),
i.e., 𝛿(𝜙) ⊆ 𝜔(𝜙). Thus we have (¬𝜙) ∈

⋂︀
𝜔(𝜙) ⊇⋂︀

𝛿(𝜙) = 𝒮(𝐴′).

(BF3): This follows directly from the definition of 𝛾𝛿 and
the fact that 𝛿 satisfies (CF3).

Thus we have shown that 𝛾𝛿 is a Büchi choice function.

Theorem 42. A contraction function .− on a theory
𝒦 ∈ EBüchi is rational and remains within the Büchi excerpt
if and only if .− is a BCF.

Proof. We have already shown that BCFs are rational (by
Corollary F.3 and Theorem 11) and remain in the Büchi
excerpt (Corollary F.5).

For the opposite direction, let .− be a rational contraction
on 𝒦 that remains in the Büchi excerpt. By Theorem 11, .−
must be induced by a choice function 𝛿. We have shown in
Lemma F.7 that the corresponding function 𝛾𝛿 is a Büchi
choice function. From the definition of BCFs and ECFs, it is
easy to see that .− =

.−𝛾𝛿 .

Theorem 44. Let .− be a rational contraction function on
a theory 𝒦 ∈ EBüchi, such that .− remains in the Büchi ex-
cerpt. The operation .− is computable iff .− =

.−𝛾 for some
computable Büchi choice function 𝛾 .

Proof. Let 𝒦 = 𝒮(𝐴) for a Büchi automaton 𝐴, and let
𝛾 be a computable Büchi choice function. Recall that it is
decidable whether a given 𝜙 is tautological (by deciding
equivalence with ⊤), and whether 𝜙 ∈ 𝒦 (Theorem 24).
Further, if 𝜙 is neither tautological nor absent from 𝒦, we
have 𝒦 .− 𝜙 = 𝒮(𝐴 ⊔ 𝛾(𝜙)), and there exists an effective
construction for the union operator ⊔. It is then easy to see
from Definition 41 that the BCF .−𝛾 is computable.

To see that computability of the Büchi choice function
is necessary, suppose a given contraction .− is computable,
rational, and remains in the Büchi excerpt. By rationality,.− is an ECF induced by some choice function 𝛿. Then it
is easy to see that .− =

.−𝛾𝛿 , for the Büchi choice func-
tion 𝛾𝛿 . And in fact, this Büchi choice function 𝛾𝛿 can be
computed: We can decide which case is applicable (again,
by decidability of tautologies and membership in 𝒦), and
the respective automata can be constructed. Of particular
interest, in the third case, we can construct the automaton
𝐴′ as the difference of the automaton𝐴′′ supporting 𝒦 .− 𝜙
(which is computable) and the automaton 𝐴 (cf. the proof
of Lemma F.7).
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